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The main focus of this research is to detect vulnerabilities on the Mississippi river 

levees using remotely sensed Synthetic Aperture Radar (SAR) imagery. Unstable slope 

conditions can lead to slump slides, which weaken the levees and increase the likelihood 

of failure during floods. On-site inspection of levees is expensive and time-consuming, so 

there is a need to develop efficient automated techniques based on remote sensing 

technologies to identify levees that are more vulnerable to failure under flood loading. 

Synthetic Aperture Radar technology, due to its high spatial resolution and potential soil 

penetration capability, is a good choice to identify problem areas along the levee so that 

they can be treated to avoid possible catastrophic failure. This research analyzes the 

ability of detecting the slump slides on the levee with different frequency bands of SAR 

data. The two SAR datasets used in this study are: (1) the L-band airborne radar data 

from NASA JPL’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), 

and (2) the X-band satellite-based radar data from DLR’s TerraSAR-X (TSX). The main 

contribution of this research is the development of a machine learning framework to 1) 

provide improved knowledge of the status of the levees, 2) detect anomalies on the levee 
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sections, and 3) provide early warning of impending levee failures.  Polarimetric and 

textural features have been computed and utilized in the classification tasks to achieve 

efficient levee characterization. Various approaches of image analysis methods for 

characterizing levee segments within the study area have been implemented and tested. 

The RX anomaly detector, a training-free unsupervised classification algorithm, detected 

the active slump slides on the levee at the time of image acquisition and also flagged 

some areas as “anomalous”, where new slides appeared at a later date. This technique is 

very fast and does not depend on ground truth information, so these results guide levee 

managers to investigate the areas shown as anomalies in the classification map. The 

support vector machine (SVM) supervised learning algorithm with grey level co-

occurrence matrix (GLCM) features provided excellent results in identifying slump slides 

on the levee. 



www.manaraa.com

 

 

 

  

  

 

DEDICATION 

I would like to dedicate this research to my father, Ganapathy Rao, and my 

mother, Janaki Devi, for their relentless support of my pursuance of academic excellence, 

and my sisters and brother for their continuous encouragement. 

ii 



www.manaraa.com

 

 

 

 

ACKNOWLEDGEMENTS 

I would like to thank my advisor Dr. Nicolas H. Younan for providing his 

valuable guidance and feedback. I would like to express my deepest gratitude to my 

committee member and my dissertation director Dr. James V. Aanstoos, who not only 

served as my supervisor but also encouraged me throughout my academic program. I 

enjoyed working as a member of his research team, and this dissertation could not have 

been written without his excellent guidance and support. He has been a great mentor with 

a pleasing personality, and I am indebted to him forever. I would like to thank my 

committee member Dr. Lori M. Bruce, who has always encouraged me to achieve my 

goals. I also thank my committee member Dr. Farshid Vahedifard for his valuable 

suggestions. I thank my project team members for the interesting project discussions and 

fun-filled field trips we had in these years.  

Finally, I would like to thank Geosystems Research Institute (GRI) for providing 

the computing facilities and NASA and SERRI for providing financial support to conduct 

this research. 

iii 



www.manaraa.com

 

 

   

  

  

  

  

 

   

   

   

   

   

   

   

  

   

   

   

     

   

 

  

   

   

   

   

    

   

   

   

   

TABLE OF CONTENTS 

DEDICATION.................................................................................................................... ii 

ACKNOWLEDGEMENTS............................................................................................... iii 

LIST OF TABLES............................................................................................................ vii 

LIST OF FIGURES ........................................................................................................... ix 

CHAPTER 

I. INTRODUCTION .............................................................................................1 

1.1 Background............................................................................................1 
1.2 Causes of Levee Failure.........................................................................2 

1.2.1 Slough slides ....................................................................................4 
1.2.2 Sand Boils ........................................................................................5 

1.3 Synthetic Aperture Radar (SAR) for Levee Monitoring........................7 
1.4 Motivation..............................................................................................7 
1.5 Contributions..........................................................................................8 
1.6 References............................................................................................10 

II. LITERATURE REVIEW ................................................................................11 

2.1 Synthetic Aperture Radar Data (SAR) Applications ...........................11 
2.2 SAR Data - Machine Learning ............................................................13 
2.3 SAR Data for Soil Moisture estimation ...............................................16 
2.4 Interferometric SAR (InSAR) for deformation measurement 

applications ..........................................................................................17 
2.5 References............................................................................................20 

III. SYNTHETIC APERTURE RADAR (SAR) ...................................................25 

3.1 Synthetic Aperture Radar (SAR) Data.................................................25 
3.2 Radar Polarimetry ................................................................................26 
3.3 Radar Data Formats .............................................................................27 

3.3.1 Single Look Complex (SLC) Image ..............................................28 
3.3.2 Multi-Look Cross Product (MLC) Image ......................................29 
3.3.3 Ground Range Detected (GRD) Image..........................................30 

3.4 Radar Frequency Bands .......................................................................30 
iv 



www.manaraa.com

 

 

 

  

 

  

   

    

    

   

   

   

   

   

   

   

   

   

  

   

 

  

   

  

   

   

   

  
  

    

    

   

   

   

   

   

    

   

   

  

 

 

3.4.1 Surface roughness variation with different radar frequency 
bands ..............................................................................................31 

3.4.2 Effect on ground penetration with different radar frequency 
bands ..............................................................................................31 

3.5 Airborne and Space-borne Polarimetric SAR Systems .......................32 
3.5.1 Airborne Radar – UAVSAR ..........................................................32 
3.5.2 Space-borne Radar - TerraSAR-X.................................................34 

3.6 References............................................................................................36 

IV. STUDY AREA AND DATA USED ...............................................................37 

4.1 Study Area ...........................................................................................37 
4.2 Data Used.............................................................................................37 

4.2.1 UAVSAR L-band Data ..................................................................38 
4.2.2 TerraSAR-X X-band Data .............................................................39 

4.3 Ground Truth (In Situ) Data ................................................................40 
4.4 References............................................................................................44 

V. METHODOLOGY ..........................................................................................45 

5.1 Automated Levee Target Recognition System ....................................45 
5.2 Feature Extraction................................................................................47 

5.2.1 Polarimetric Decomposition Features: Entropy (H), 
Anisotropy (A), Scattering Angle (Alpha).....................................48 

5.2.1.1 Polarimetric Decomposition ....................................................48 
5.2.1.2 Polarimetric Features ...............................................................49 

5.2.1.2.1 Entropy (H) ..................................................................49 
5.2.1.2.2 Anisotropy (A) .............................................................50 
5.2.1.2.3 Mean Alpha Angle (α) .................................................50 

5.2.2 Feature Extraction using Discrete Wavelet Transform 
(DWT)............................................................................................51 

5.2.3 Grey Level Co-Occurrence Matrix (GLCM) Features ..................53 
5.3 Radar Data Classification ....................................................................55 

5.3.1 Unsupervised Classification - RX Anomaly Detector ...................55 
5.3.2 Supervised Classification...............................................................56 

5.3.2.1 Support Vector Machine (SVM) Classification.......................56 
5.3.2.2 k-Nearest Neighbor (k-NN) Classifier.....................................58 

5.4 References............................................................................................61 

VI. EXPERIMENTAL RESULTS AND ANALYSIS ..........................................63 

6.1 RX Anomaly Detector Classification Results......................................63 
6.1.1 UAVSAR June 2009 Image Classification....................................64 
6.1.2 UAVSAR January 2010 Image Classification ...............................72 
6.1.3 Impact of Polarization and Frequency on Anomaly 

Classification..................................................................................75 

v 



www.manaraa.com

 

 

   

 

  

 

 
  

   

   

   

   

   

   

   

  
  

   

   

  

 

  

   

   

 

6.2 Supervised Classification.....................................................................82 
6.2.1 Support Vector Machine (SVM) Classification with 

Discrete Wavelet Transform (DWT) features for UAVSAR 
2-class subset .................................................................................83 

6.2.2 Performance comparison of k-Nearest Neighbor (k-NN) 
and Support Vector Machine (SVM) classifiers with 
GLCM and DWT features for UAVSAR 4-class subset ...............90 

6.2.2.1 k-NN Classification with DWT features..................................92 
6.2.2.2 SVM classification with DWT features...................................94 
6.2.2.3 k-NN classification with GLCM features ................................96 
6.2.2.4 SVM classification with GLCM features ................................98 

6.2.3 SVM Classification with L-band and X-band SAR data .............100 
6.2.4 SVM Classification with L-band UAVSAR data ........................101 
6.2.5 SVM Classification with X-band TerraSAR-X data ...................102 
6.2.6 Classification with polarimetric decomposition parameters 

Entropy (H), Anisotropy (A) and Alpha (H-A-Alpha) ................104 
6.2.6.1 Entropy (H) ............................................................................104 
6.2.6.2 Anisotropy (A) .......................................................................104 
6.2.6.3 Scattering Angle (α) ...............................................................105 

6.2.7 Classification with H-A-Alpha polarimetric decomposition 
features.........................................................................................106 

VII. CONCLUSION AND FUTURE WORK ......................................................109 

7.1 Future Work .......................................................................................111 

vi 



www.manaraa.com

 

 

 

    

    

    

    

     

   

  

    

    

  

  

  

   

   
   

  

  

  

  

  

   

  

   

LIST OF TABLES 

3.1 Frequency bands used by radar systems ..........................................................30 

3.2 UAVSAR Instrument Key Parameters ............................................................33 

3.3 TerraSAR-X operation modes with swath width and resolutions ...................35 

3.4 TerraSAR-X key parameters............................................................................35 

4.1 Levee Slides Data from Mississippi Levee Board...........................................42 

5.1 GLCM Feature Calculation..............................................................................55 

6.1 Slide Ground Truth Data from Mississippi Levee Board, with slides 
active at the time of the 2009 radar image highlighted in red .........................67 

6.2 Confusion matrix for a binary classifier ..........................................................79 

6.3 Confusion Matrix of SVM Classifier output for UAVSAR dataset with 
σ = 0.08 and wavelet block size B = 8. PA is Producer’s Accuracy; UA 
is User’s Accuracy ...........................................................................................87 

6.4 Confusion Matrix of k-NN classifier output with DWT features, Block 
Size = 8, k = 1 with 30% training and 70% testing samples............................93 

6.5 Confusion Matrix of k-NN classifier output with DWT features -
Block Size = 8, k = 1 with 50% training samples............................................94 

6.6 Confusion Matrix of SVM classifier output with DWT features, block 
Size = 8, σ= 0.04 with 30% training and 70% testing samples .......................95 

6.7 Confusion Matrix of SVM classifier output with DWT features, block 
Size = 8, σ= 0.04 with 50% training samples ..................................................96 

6.8 Confusion Matrix of k-NN classifier output with GLCM features, 
Block Size = 11, k=1 with 30% training and 70% testing samples .................98 

6.9 Confusion Matrix of SVM classifier output with GLCM features, 
Block Size = 11, σ= 0.5 with 30% training samples........................................99 

vii 



www.manaraa.com

 

 

  

   

    

  

 

 

6.10 Confusion Matrix of SVM classifier output with GLCM features, 
Block Size = 11, σ= 0.5 with 50% training samples......................................100 

6.11 Confusion Matrix of Maximum Likelihood Classifier output for 
UAVSAR dataset with leave-one-out cross validation. PA is 
Producer’s Accuracy; UA is User’s Accuracy...............................................107 

viii 



www.manaraa.com

 

 

 

  

  

  

  

  

  

  

  

     

    

   
  

  

 
  

    

    

  

  

  

  

   
  

LIST OF FIGURES 

1.1 Earthen Levee on the banks of Albemarle Lake, MS, a Mississippi 
River oxbow.......................................................................................................3 

1.2 A schematic representation of levee failure mechanisms (after Joe 
Dunbar, 2011) ....................................................................................................3 

1.3 Primary levee failure mechanisms: A slough slide on the levee 
adjacent to Chotard Lake, MS ...........................................................................4 

1.4 Primary levee failure mechanisms: Bagged sand boil near Eagle Lake, 
MS......................................................................................................................6 

1.5 Relief wells installed on the landside of the levee at Francis, MS. ...................6 

2.1 SAR phase shift between two images..............................................................17 

2.2 Interferogram deformation map of Mississippi river levees from March 
and April 2011 TerraSAR-X imagery [55]. .....................................................19 

3.1 (a) Horizontally polarized radar wave: the electric field (blue) is 
aligned along the horizontal axis and the magnetic field is aligned 
along the vertical axis (white) (b) vertically polarized radar wave: the 
electric field (red) is aligned along the vertical axis and the magnetic 
field is aligned along the horizontal axis (white) [1]. ......................................27 

3.2 Representation of waves in complex format [4]. .............................................29 

3.3 NASA Gulfstream III aircraft with a pod housing the UAVSAR ...................34 

4.1 Polarimetric UAVSAR 3 band (HH, HV, and VV) data shown in color 
composite along the lower Mississippi River. .................................................38 

4.2 Color composite of dual-polarized (HH and VV) TerraSAR-X data of 
September 15, 2010. ........................................................................................39 

4.3 Field data collection on Mississippi River levees near Albemarle Lake, 
MS....................................................................................................................41 

ix 



www.manaraa.com

 

 

  

 

    

    

    
  

  

  

    

    

  

   

  

  

  

 
   

   
  

  

  

  

  

   
   

   
  

  

 
  

4.4 National Agriculture Imagery Program (NAIP) imagery of August, 
2008..................................................................................................................43 

5.1 Block diagram of Unsupervised Classification approach................................46 

5.2 Block diagram of Supervised Classification approach ....................................47 

5.3 Entropy – Alpha (H - α) plane showing different scattering 
mechanisms......................................................................................................51 

5.4 Schematic diagram of one-level 2-Dimensional DWT image 
decomposition process .....................................................................................53 

5.5 SVM hyperplane with samples from two classes ............................................57 

5.6 k-NN classification approach...........................................................................59 

6.1 2009 NAIP optical imagery with locations of known slump slides 16 – 
25 and the anomaly detector output on the foreground. ..................................66 

6.2 Scatter plot of the RX anomaly detector output, which is the 
normalized Mahalanobis distance, for UAVSAR 2009 image........................68 

6.3 (a) Outliers in the RX Detector output due to trees on the levee, which 
have higher Mahalanobis distance values that are very different from 
the rest of the levee (b) NAIP optical image of the study area subset. ............69 

6.4 Histogram of the normalized RX Detector classification output for 
UAVSAR 2009 image .....................................................................................69 

6.5 RX Anomaly detector classification output for active slides 20 – 21 at 
the time of UAVSAR image acquisition on 16 June 2009. .............................70 

6.6 RX Anomaly detector classification output for middle part of the levee 
segment which cover slides 20 -22. .................................................................71 

6.7 Lower part of the levee segment which contain three slides (23 – 25) 
active at the time of image acquisition on 16 June 2009. ................................72 

6.8 RX Anomaly detector classification map for 25 January 2010 
UAVSAR image. .............................................................................................74 

6.9 Classification output of 25th January 2010 UAVSAR image with 
NAIP optical imagery background which was used to confirm 
locations of active and repaired slides and also the construction areas 
on the levee ......................................................................................................75 

x 



www.manaraa.com

 

 

  

  

  

  

  

  

  

   

  

  

  

  

  

   

  

  

  

  

  

 

  

 
  

  

  

  

  

  

  

6.10 Histogram distribution of RX anomaly detector output for January 
2010 L-band UAVSAR image subset..............................................................77 

6.11 Classification map of RX anomaly detector results for L-band 
UAVSAR imagery:..........................................................................................77 

6.12 Classification map of RX anomaly detector results for X-band 
TerraSAR-X imagery:......................................................................................78 

6.13 (a) Ground truth mask with two classes: slump slide (mask = 1) and 
healthy levee (mask = 0) (b) RX Detector output for the image subset. .........81 

6.14 ROC curve of anomaly detector output for UAVSAR data for 
detecting the slump slide pixels. ......................................................................81 

6.15 ROC curve of anomaly detector output for TERRASAR-X data for 
detecting the slump slide pixels. ......................................................................82 

6.16 Training mask for UAVSAR subset with two ground truth classes: 1. 
Slump slide and 2. Healthy Levee with 3-band UAVSAR (HH, HV, 
and VV) image at the background. ..................................................................85 

6.17 Classification accuracy (%) of SVM classifier with DWT features and 
with different block / window size (B). ...........................................................87 

6.18 SVM Classification map for UAVSAR dataset with σ = 0.08 and 
wavelet block size B = 8 ..................................................................................88 

6.19 Classification accuracy (%) of SVM classifier with 5% of the labeled 
samples used to train the classifier. ..................................................................89 

6.20 Classification accuracy (%) of SVM classifier with DWT features and 
with different block / window size (B). 30% of the labeled samples 
were used to train the classifier........................................................................89 

6.21 (a) UAVSAR 3-band (HH, HV, and VV) color composite of the study 
area (b) Training mask with four ground truth classes ....................................91 

6.22 Classification accuracy (%) of k-NN classifier with DWT features and 
with different block size (represented as B) for UAVSAR subset with 
50% training samples. ......................................................................................93 

6.23 Classification accuracy (%) of SVM classifier with DWT features and 
with different block size (represented as B) as well as RBF kernel 
parameter (represented as sigma) for UAVSAR subset with 50% 
training samples. ..............................................................................................95 

xi 



www.manaraa.com

 

 

  

 
  

  

  

  

  

  

  

  

  

  

  

  

   

  

  

 

6.24 Classification accuracy (%) of k-NN classifier with GLCM features 
for UAVSAR subset for different block sizes and with 50% training 
samples.............................................................................................................97 

6.25 Classification accuracy (%) of SVM classifier with GLCM features for 
UAVSAR Subset for different block size and with 50% training 
samples.............................................................................................................99 

6.26 Training mask with two ground truth classes: 1. Slump slide, and 2. 
Healthy Levee ................................................................................................101 

6.27 SVM tuning for UAVSAR dataset of 25 January, 2010. Relationship 
between classification accuracy and σ with a constant regularization 
parameter log C = 4. ......................................................................................102 

6.28 SVM tuning for TerraSAR-X dataset of 15 September, 2010. 
Relationship between classification accuracy and σ with a constant 
regularization parameter log C = 4. ...............................................................103 

6.29 Polarimetric features from 16 June 2009 UAVSAR subset. (a) 
Entropy, (b) Anisotropy, and (c) Scattering angle (α). ..................................105 

6.30 Training mask for UAVSAR subset with two ground truth classes: 1. 
Slump slide and 2. Healthy Levee with 3-band UAVSAR (HH, HV, 
and VV) image at the background. ................................................................106 

6.31 SVM classifier accuracies with polarimetric decomposition feature set 
(H, A, and Alpha) for UAVSAR subset of 16 June 2009..............................108 

xii 



www.manaraa.com

 

 

 

 

  

 

   

 

 

  

 

  

 

 

INTRODUCTION 

1.1 Background 

Levees are the embankments built along the side of a stream or river channel to 

prevent flooding of the adjacent land. Major levee systems have been built along the 

Mississippi River and Sacramento River in the United States. The Mississippi levee 

system represents one of the largest levee systems in the world, comprising over 3500 

miles of levees, extending over 620 miles along the Mississippi, stretching from Cape 

Girardeau, Missouri to the Mississippi Delta [1] [2]. The levee system is constructed of 

compacted soil and clay and protects more than 4 million citizens and 33,000 farms from 

destructive floods [1]. Monitoring the physical condition of levees is vital in order to 

protect them from flooding. The dynamics of subsurface water events can cause damage 

on levee structures.  The alignment of the levee is usually based on the flood protection 

requirements [3]. The levee is constructed from borrow pits adjacent to the levee, which 

produce the fill material that is often heterogeneous. Existing levee assessment systems 

require manual inspections, which are very expensive and time consuming. Over the last 

decade, there have been several studies on the use of remote sensing for levee monitoring 

and assessment. 

1 
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1.2 Causes of Levee Failure 

Levees typically are earthen embankments constructed from a variety of materials 

ranging from cohesive to cohesion-less soils to prevent flooding (Figure 1.1). Man-made 

levee failures can occur due to overtopping, surface erosion, internal erosion (sand boils), 

and by slope failures [4] [5]. A schematic representation of levee failures is shown in 

Figure 1.2. Levee failures can occur by any of these mechanisms due to natural or man-

made hazards such as floods, hurricanes, earthquakes or poor maintenance.  Changes in 

channel roughness and addition of structures such as bridges, etc. may significantly alter 

the channel capacity, which could lead to overtopping of the levee structure. Overtopping 

of levees is a function of flood height and the elevation that the levee was built to protect 

from flooding. Seepage through levees occurs due to cracks in the levee or because of 

coarse grained soil used to construct the levee. Grass or some other mat-like vegetation is 

planted on the top of the levees so that its erosion will be kept to a minimum. Two types 

of problems that occur along the levees which can be a precursor to complete failure 

during a high water event are: slough (or slump) slides which occur due to slope failures 

and sand boils caused due to internal erosion. 

2 
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Figure 1.1 Earthen Levee on the banks of Albemarle Lake, MS, a Mississippi River 
oxbow. 

Figure 1.2 A schematic representation of levee failure mechanisms (after Joe Dunbar, 
2011) 

3 
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1.2.1 Slough slides 

If the underlying foundation materials that support the levee are weak, or become 

destabilized, a slope failure can develop and result in a catastrophic failure of the levee. 

These slope failures can form as slough / slump slides along a levee and are vulnerable to 

levee failure. Usually, the slough slides appear on the river side of the levee and may 

cause seepage during high water events.   The clay soil on the levees shrink during dry 

weather period and gain moisture during wet season, resulting a loss in shear strength and 

cause a failure. Figure 1.3 is a photo of a slough slide adjacent to Chotard Lake, MS, 

taken during one of the field data collection trips. 

Figure 1.3 Primary levee failure mechanisms: A slough slide on the levee adjacent to 
Chotard Lake, MS 

4 
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1.2.2 Sand Boils 

Sand boils are springs that form on the land side of a levee containing a river at 

extremely high flood stage. Hydrostatic pressure generated by the column of river water 

exerts a downward force that is too great for the wall material of the river channel to 

contain, and thus water is forced through the wall material of the channel [5] [6]. This 

underseepage resurfaces on the land side in the form of a cone of sand which may lead to 

erosion of the levee toe and foundation. Figure 1.4 is a photo of a sand boil in the Eagle 

Lake area near Vicksburg, MS, taken during one of the field data collection trips. 

Seepage berms are located adjacent to the landside slope of the levee to reduce the 

hydraulic pressure of water passing through the sand layers under the levee. Usually, 

seepage berms are very wide and require tremendous amount of borrow material. So 

when there is limited landside area, the engineers install relief wells (Figure 1.5) at the 

levee toe instead of constructing berms to reduce the water pressure. However, the major 

disadvantage of relief wells is they require periodic maintenance. 

5 
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Figure 1.4 Primary levee failure mechanisms: Bagged sand boil near Eagle Lake, MS 

Figure 1.5 Relief wells installed on the landside of the levee at Francis, MS. 

6 



www.manaraa.com

 

 

  

 

  

 

 

  

  

  

  

  

 

 

   

1.3 Synthetic Aperture Radar (SAR) for Levee Monitoring 

Synthetic Aperture Radar (SAR) is mostly a space-borne or airborne side-looking 

radar system which utilizes the flight path of the platform to synthesize a long aperture. 

SAR is the only practical technique to achieve high spatial resolution remote sensing 

imagery even from space platforms [8]. SAR data has been widely used in disaster 

management. Polarimetric and interferometric radar data can provide surface and 

subsidence information for a levee monitoring system [9]. Polarimetric SAR helps 

classify and quantify ground conditions, while differential SAR interferometry detects 

small surface displacements over time. 

Polarimetric SAR data is very effective for classification as it contains 

information about different scattering characteristics for each target. Synthetic Aperture 

Radar technology, due to its high spatial resolution and potential soil penetration 

capability, is a good choice to identify problem areas on earthen levees so that they can 

be treated to avoid possible catastrophic failure. The radar backscatter data is capable of 

identifying variations in soil properties of the areas that might cause levee failure. This 

research is mainly focused on analyzing different algorithms to assess the condition of 

levee structure using multi-polarized SAR images. 

1.4 Motivation 

Over the entire US, there are over 100,000 miles of dam and levee structures of 

varying designs and conditions [3].  Currently, there are limited processes to monitor 

these structures and predict potential risk to communities. Dam and levee failures can 

cause catastrophic damage and loss of life. Levee breach is a common levee failure 

mechanism caused either by surface erosion or subsurface weakness or under-seepage. 
7 
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The catastrophe caused by hurricane Katrina in 2005 emphasizes the importance of 

examination of levees to improve the condition of those that are prone to failure during 

floods. On-site inspection of levees is costly and time-consuming, so there is a need to 

develop efficient techniques based on remote sensing technologies to identify levees that 

are more vulnerable to failure under flood loading. Techniques using remote sensing 

imagery to detect problem areas on the levee will assist levee managers to prioritize their 

tasks to inspect, test and repair them in a timely manner to avoid complete failures. 

1.5 Contributions 

The main contribution of this research is the development of a machine learning 

framework to 1) provide improved knowledge of the status of the levees, 2) detect 

anomalies on the levee sections, and 3) provide early warning of impending levee 

failures. 

The tasks to meet this objective include: 

(a) Design and implement experiments using airborne and satellite-based radar 

imagery to detect anomalies on the levee; 

(b) Collect ground truth data and take in-situ measurements at various slump slide 

and healthy locations on the levee: create polygons at various healthy and 

slide areas on the levee with a GPS instrument, and use them as training 

masks in the classification tasks; 

(c) Analyze polarimetric and textural features of the image which include: 

1) per-pixel features such as radar backscatter intensities from each 

polarization channel (HH, HV, and VV) 
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2) Computation of polarimetric decomposition features such as entropy, 

anisotropy, and scattering angle 

3) Derivation of textural features, which include features based on the wavelet 

transformation and grey level co-occurrence matrix 

(d) Develop and compare various machine learning algorithms to classify the 

SAR imagery for detecting the anomalies on the levees 

This contribution will enable the development of a new model for levee slide 

detection through automated analysis of synthetic aperture radar imagery supplemented 

by this cost effective method of monitoring a levee system. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Synthetic Aperture Radar Data (SAR) Applications 

SAR data has been widely used in disaster management. Polarimetric and 

interferometric radar data can provide surface and subsidence information for a levee 

monitoring system. Polarimetric SAR helps classify and quantify ground conditions, 

while differential SAR interferometry detects small surface displacements over time. The 

polarimetric SAR data is very effective for classification as it contains different scattering 

characteristics for each target and hence contributes changes in the backscatter signal.  

Interferometric SAR (InSAR) is useful for measuring ground movements using the phase 

content of the radar signal. 

Remote sensing studies in the last decade have largely focused on detection of 

deformation, slides, and seepage on levees and dikes. Synthetic aperture radar data has 

been investigated and widely used for deformation detection on levees and dykes. The 

German TerraSAR-X satellite and the Canadian RADARSAT satellite have been used to 

monitor and detect levee movements and subsidence associated with levee failures [1]. 

High resolution UAVSAR data has been used to detect deformation of the levees, 

subsidence along the levee toe, and seepage through the levees in California’s 

Sacramento-San Joaquin Delta by making use of polarimetric and interferometric SAR 

techniques [2]. Airborne UAVSAR and satellite-based TerraSAR-X polarimetric SAR 
11 
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imagery have been used for levee slide detection to aid the levee screening process [3] [4] 

[5] 6]. The type of vegetation that grows in a slide area differs from the surrounding levee 

vegetation, which can also be utilized in detecting slides [7]. Inspection of grass-covered 

dykes with remote sensing imagery obtained using hand-held sensors has been conducted 

with soil moisture and quality of the dyke cover as the two important criteria [8]. 

Radar polarization and incidence angle are important factors that affect the radar 

backscatter [9]. The radar backscatter is strong for lower incidence angles and decreases 

with increasing incidence angles. Also, the radar backscatter is influenced by the 

frequency of the radar wave and the penetration depths of different radar bands vary with 

its wavelengths; the longer the wavelength, the greater the penetration depth. A short 

wavelength (3 cm) is scattered by small objects on Earth, for example tree leaves.  Lau’s 

research focuses on using three different SAR imagery; ALOS PALSAR L-band, 

RADARSAT-1 C-band, and the TerraSAR-X X-band data and compared their 

performances in Earthquake damage assessment [10]. Battsengel et al. have used multi-

frequency radar images for the classification of different urban land surface features [11]. 

The performance evaluation of levee anomaly detection using UAVSAR L-band and 

TerraSAR –X X-band SAR data was investigated and the results showed higher 

classification accuracies with L-band data compared to the X-band data [12] [13]. SAR 

data can also be used to delineate oil slicks which cause marine pollution. The high 

resolution, low-noise UAVSAR L-band data was used in the detection, migration, and 

impact of oil from the Deepwater Horizon oil spill [14] [15]. 
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2.2 SAR Data - Machine Learning 

In SAR images, texture and intensity are the two important parameters for the 

classification tasks. Statistical texture analysis is very important in SAR imagery since it 

allows better representation and segmentation of various objects on the levee. The radar 

Backscatter is affected by soil moisture, vegetation density, and surface roughness. 

The discrete wavelet transform is a promising tool for texture analysis because it 

has the ability to examine the data at different scales [16]. Fukuda et al. applied the 

texture feature set derived from the wavelet decomposition to the classification of multi-

frequency polarimetric NASA/JPL AIRSAR imagery [17]. Discrete wavelet transform 

feature extraction has been used for dimensionality reduction of hyperspectral data and 

various wavelet-based features were applied to the problem of automatic classification of 

ground vegetation from hyperspectral signatures [18]. The ability of wavelet analysis to 

decompose the image into different frequency sub-bands makes it suitable for image 

classification. The dependence between features from different sub-bands have been 

investigated and showed that dependence among features are effective for sub-band 

selection and achieved lower classification error rates with smaller number of sub-bands 

[19]. 

Grey level co-occurrence matrix (GLCM) features have been a popular method 

for textural extraction in remotely sensed images [20] [21]. Cui et al. [22] have 

implemented a multi-classifier decision fusion framework for levee health monitoring 

using texture features derived from the grey level co-occurrence matrix. Levee slump 

slide detection was performed by Omni-directional GLCM texture analysis which has 

been conducted on the re-sampled images using Rubber Band Straightening Transform 
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(RBST) and Spiral Straightening Transform (SST) [23]. GLCM textural features 

extracted from the ERS-1 synthetic radar imagery have been used to map sea ice texture 

[24]. 

Several supervised and unsupervised classification algorithms have been applied 

to SAR data for efficient land cover classification [25] [26]. Polarimetric decomposition 

parameters entropy (H), anisotropy (A), and alpha (α) derived from the coherency matrix 

calculated from the SAR data have been used to detect anomalies such as slough slides 

along the levee [27]. Melamed et al. [28] applied the Silverman-Totman-Caefer (SRC) 

algorithm and a classification algorithm by Cloud and Pottier [29] to polarimetric SAR 

data to detect anomalies. Texture classifying neural network algorithm can be applied to 

detect oil spills from Synthetic Aperture Radar (SAR) imagery [30]. Neural networks 

have been applied to the classification of polarimetric SAR data using features extracted 

from the Freeman decomposition model [31] and Cloud decomposition model [32] [33]. 

Ince et al. [34] proposed radial basis function (RBF) based classifier with 

entropy/alpha/anisotropy (H/α/A) decomposition features and GLCM texture features and 

stated that the overall classification performance has been significantly improved with 

RBF classifier. Chen et al. have used polarimetric classification algorithms for 

agricultural crop identification and achieved better accuracies by applying the coherency 

matrix features to the Wishart maximum likelihood (WML) classification method [35]. 

Recently anomaly detection algorithms have become an important application for 

target detection. These unsupervised classification techniques are very fast and do not 

depend on ground truth information. Reed and Yu developed a method referred to as the 

RX detector [36] which has shown success in anomaly detection of multispectral and 
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hyperspectral data [37]. The SRC and RX algorithms were compared for detecting 

anomalous pixels in the hyperspectral imagery and stated that on average the SRC 

algorithm takes 1.3 times the amount of time the RX algorithm does [38]. Baghbidi et al. 

implemented anomaly detection algorithms on hyperspectral data using wavelet features 

as a pre-processing data reduction step [39]. The RX anomaly detection algorithm was 

implemented to detect anomalies on the Mississippi river levees and the classifier’s 

output was further investigated by comparing with the in-situ soil properties like soil 

texture, moisture content, hydraulic conductivity, and penetration resistance [40]. 

Several supervised classification techniques have been used for the classification 

of polarimetric synthetic aperture radar data. The support vector machine (SVM) is a 

powerful supervised learning method for analyzing and recognizing patterns. It is a state-

of-the-art classification method introduced by Vapnik [41]. SVM, a nonparametric 

classification method, has been used successfully in remote sensing studies [42]. Zhang et 

al. [43] implemented the SVM algorithm for the classification of polarimetric SAR 

images using scattering and textural features. Automatic classification of multi-temporal 

ERS-1 SAR images using radial basis function neural network classifier has been 

implemented for classifying different land-cover classes and achieved high accuracies 

[44]. A multilayer feed-forward neural network classifier with statistical features was 

applied to multi-temporal RADARSAT imagery for extracting landuse / landcover 

information and the results demonstrated better classification performance with a neural 

network classifier compared to the maximum likelihood classifier (MLC) [45].  
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2.3 SAR Data for Soil Moisture estimation 

The estimation of soil moisture using synthetic aperture radar data has been 

studied by many researchers. Many empirical models for soil moisture estimation were 

developed for soils with no vegetation cover [46] [47] [48]. Oh et al. [46] developed an 

inversion technique to obtain surface roughness and dielectric constant from the co-

polarization ratio p and the cross-polarization ratio q. However, the presence of 

vegetation changes the backscatter magnitudes and the estimation of soil moisture would 

be more complex. The model works over limited ranges of roughness and moisture. The 

co-polarization and cross-polarization ratios are defined as: 

0 0𝑝 = 𝜎ℎℎ/𝜎𝑣𝑣 (2.1) 

0𝑞 = 𝜎ℎ𝑣 
0 /𝜎𝑣𝑣 (2.2) 

0 0where 𝜎ℎℎ is the HH polarized backscatter coefficient, 𝜎𝑣𝑣 is the VV polarized 

0backscatter coefficient, and 𝜎ℎ𝑣 is the HV polarized backscatter coefficient. The 

dielectric constant is obtained by the following empirical equations: [16] 

1 
2𝜃 3г0 𝑞 

( ) 
⁄ 

. [1 − ] + √𝑝 − 1 = 0 (2.3)
𝜋 0.23√ г0 

2
1−√𝜀𝑟 г0 = | | (2.4)
1+ √𝜀𝑟 

where θ is the incidence angle in radians, Γ0 is the Fresnel reflectivity of the surface at 

nadir, and εr is the real part of dialectic constant and the imaginary part is ignored. 
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2.4 Interferometric SAR (InSAR) for deformation measurement applications 

Radar interferometry is an imagining technique for measuring topography 

changes of the Earth’s surface over time. In this technique, SAR data was acquired from 

the same location at two different times. If there is no topography change, then the phase 

of the second-pass radar signals would be the same as that of the first-pass signal. 

Interferometric maps are generated by subtracting the phase value from one SAR data 

acquisition to that of the other, for the same point on the ground (Figure 2.1). The 

resulting phase difference is represented by interferometric fringes, which is directly 

related to the topographic height. A time-series of N single look complex (SLC) SAR 

images will be used to generate ground deformation fields and interpretation maps in the 

study area. 

Figure 2.1 SAR phase shift between two images 
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Radar interferometry has proven to be an extremely reliable technique for 

measuring subtle deformations of man-made and natural structures. InSAR techniques 

are very useful in anticipating the behavior of many natural hazards such as volcanoes, 

earthquakes, landslide etc. [49]. Differential InSAR (DInSAR) has the capability of 

measuring displacement with millimeter accuracy and has been used by the scientific 

community for further study of ground deformation hazards [50]. The interferometric 

technique to detect terrain deformations require two SAR images to be taken from 

exactly the same position in space at two different times. Interferometric SAR was first 

applied to map the ground surface displacement caused by the 1992 Landers earthquake 

[51]. The differential interferometry (DInSAR) subtracts the topographic contribution 

using a Digital Elevation Model (DEM) from the differential phase values of two SAR 

images collected at different times over the same area of interest. In recent years, several 

advanced DInSAR techniques have been proposed including Persistent Scatterer 

Interferometric (PSI) analysis [52].  DInSAR techniques can be used to monitor short-

term evolution of landslides, exploiting the information captured by Airborne UAVSAR 

instrument [53]. Monitoring the water protection systems is crucial for life especially for 

the low-lying countries like Netherlands as the majority of Dutch population is living on 

land reclaimed from the sea, rivers, and lakes. The persistent scatterer InSAR (PS-

InSAR) technology has been used to monitor deformation of dams and dykes in the 

Netherlands to mitigate hazards [54]. TerraSAR imagery was used to map the 

deformation caused by the formation of slump slide on the levees of the Mississippi River 

during the great Mississippi river flooding in May 2011 [55]. 
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Figure 2.2 Interferogram deformation map of Mississippi river levees from March and 
April 2011 TerraSAR-X imagery [55]. 
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CHAPTER III 

SYNTHETIC APERTURE RADAR (SAR) 

3.1 Synthetic Aperture Radar (SAR) Data 

Synthetic Aperture Radar (SAR) transmits electromagnetic waves at a wavelength 

that can range from a few millimeters to tens of centimeters and operates during day and 

night under all weather conditions. The intensity and phase of the backscattered 

(reflected) radar signal from each element on the ground can be put in the form of a 

complex valued SAR image. The intensity / magnitude of the SAR image depends 

primarily on terrain slope, surface roughness, and dielectric constants (soil moisture), 

whereas the phase of the radar image depends on the distance between the radar antenna 

and the ground targets. 

Synthetic Aperture Radar technology, due to its high spatial resolution and 

potential soil penetration capability, is a good choice to identify problem areas on levee 

so that they can be treated to avoid possible catastrophic failure. The radar backscatter 

data is capable of identifying variations in soil properties of the areas that might cause 

levee failure. This research is mainly focused on analyzing different algorithms to assess 

the condition of levee structure using multi-polarized SAR images. 
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3.2 Radar Polarimetry 

In polarimetric SAR, the transmitted signal is polarized and different polarizations 

of the backscatter signal are detected. The radar polarization describes the direction of the 

orientation of the electric field component of an electromagnetic wave, and imaging 

radars can have different polarization configurations. The electric and magnetic fields are 

perpendicular to each other. If the direction of the electric field wave crest is aligned 

along the horizontal axis it is called a horizontally polarized wave, and if the electric field 

wave crest is oriented / aligned in the vertical direction it is called a vertically polarized 

radar wave. Figure 3.1 depicts the horizontal and vertical polarized radar waves. There 

are many different ways to mix the horizontal and vertical pulses together in a 

transmission scheme. The transmitted radar waves can be horizontally (H) or vertically 

(V) polarized and can be received in both H and V. With different polarizations, HH 

(Horizontal transmit and Horizontal receive), HV (Horizontal transmit and Vertical 

receive), VH (Vertical transmit and Horizontal receive) and VV (Vertical transmit and 

Vertical receive), SAR imagery can be used to separate different causes contributing to 

changes in the backscatter signal. 
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Figure 3.1 (a) Horizontally polarized radar wave: the electric field (blue) is aligned 
along the horizontal axis and the magnetic field is aligned along the vertical 
axis (white) (b) vertically polarized radar wave: the electric field (red) is 
aligned along the vertical axis and the magnetic field is aligned along the 
horizontal axis (white) [1]. 

3.3 Radar Data Formats 

A SAR image is a 2-D array of pixels formed by columns and rows where each 

pixel is associated with a small area on the Earth’s surface depending on the sensor’s 

spatial resolution. Each pixel is represented as a complex number; has both magnitude 

and phase measures. The complex number is often represented by an equivalent pair of 

numbers, the real in-phase component and the imaginary quadrature component.  One 

dimension of the image called “range” or “cross-track”, which is a measure of the line-of-

sight distance from the radar to the target. The other dimension is called “azimuth” or 

“along-track” and is perpendicular to the range. The surface reflectivity, which is 

expressed as a radar backscattering coefficient σo (“sigma zero” or “sigma nought”), is a 

function of the radar frequency, polarization, incidence angle of the electromagnetic 

wave θi, and the surface parameters like topography, local incidence angle, surface 

roughness, and dielectric properties [2].  
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3.3.1 Single Look Complex (SLC) Image 

The radar SLC is a single look complex, phase preserved, slant range image 

generated from the raw SAR data for each polarization (HH, HV, VH and VV) channel. 

Each pixel is represented as a complex number; has both magnitude and phase of the 

electromagnetic wave [3]. Apart from the amplitude data, the major advantage of this 

data is that it contains phase information and has the highest possible resolution. 

However, the single-look images are very speckled and in slant range, which makes 

visual interpretation and characterization very difficult. 

In radar remote sensing, the concept of phase is usually applied to the oscillation 

of electromagnetic waves. The complex number format is given by: 

𝐴 ∗ (cos(𝜔𝑡) + 𝑖 ∗ sin(𝜔𝑡)) (3.1) 

where ω is the wave frequency, A is its amplitude and A*cos(ωt) is the cosine or the real 

component and A*sin(ωt) is the sine or imaginary component. When translated to real 

and imaginary axes complex format this wave is defined by I = Acos(θ) and Q= Asin(θ) 

and the amplitude A is defined as A = sqrt (I2 +  Q2) (Figure 3.2) [4]. 
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Figure 3.2 Representation of waves in complex format [4]. 

3.3.2 Multi-Look Cross Product (MLC) Image 

The multi-look processing technique is widely used in radar applications due to 

speckle reduction by averaging single-look pixels. A multi-looking radar image not only 

improves the image quality by reducing the speckle noise but it can also be useful for 

correcting the geometric and radiometric distortions. These multi-look pixels are derived 

from the average of the product of each single-look pixel. These complex cross products 

preserve most of the important amplitude and phase information that are needed to 
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analyze the data. Overall, the MLC images have improved radiometric resolution with 

less speckle noise but have degraded spatial resolution. 

3.3.3 Ground Range Detected (GRD) Image 

The ground range detected (GRD) product consists of multi-looked SAR data 

projected to the ground range using an Earth ellipsoid model. The resultant product has 

square pixels with reduced speckle and reduced geometric resolution. 

3.4 Radar Frequency Bands 

The radar systems work in a wide band of transmitted frequencies, from 1 GHz to 

110 GHz. Radars with longer wavelength (lower transmission frequencies) are less 

affected by weather conditions such as rain and clouds. However, the higher the 

transmitted frequency, the better the potential resolution of the radar system is [5]. Table 

3.1 shows the frequency bands used by radar systems [6]. For example, the X-band radars 

have higher penetration capability through clouds / rain / fog than the Ka band radars. 

This research uses the data from the L-band and X-band sensors. 

Table 3.1 Frequency bands used by radar systems 

Frequency Band Frequency Range (GHz) Wavelength Range (cm) 
P band 0.3 - 1 30 – 100 
L band 1 - 2 15 – 30 
S band 2 - 4 7.5 – 15 
C band 4 – 8 3.75 – 7.5 
X band 8 – 12 2.5 – 3.75 
Ku band 12 – 18 1.67 – 2.5 
K band 18 – 27 1.11 – 1.67 
Ka band 27 – 40 0.75 – 1.11 
V band 40 – 75 0.4 – 0.75 
W band 75 - 110 0.27 – 0.4 
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3.4.1 Surface roughness variation with different radar frequency bands 

Surface roughness on the levee refers to multiple irregularities that relate either to 

textures or the objects on them such as vegetation or slump slides. A surface is 

characterized as “smooth” or “rough” depending on the wavelength of the radar and the 

height of an irregularity. For example, a Ka-band radar reflects the surface with moderate 

roughness as “rough” due to its lower wavelength (λ = 0.85 cm), whereas an L-band 

radar may reflect the same surface as “smooth” due to its higher wavelength (λ = 24 cm).  

Greater height variations compared with the wavelength will appear rough even to the L-

band. Roughness is a relative concept depending upon the wavelength and incidence 

angle. According to the Rayleigh criterion [7], a surface is considered rough if: 





cos4.4
h (3.2) 

where h is the mean height of surface variations, λ is the wavelength, and θ is the 

incidence angle. 

3.4.2 Effect on ground penetration with different radar frequency bands 

The radar backscatter is influenced by the frequency of the radar wave and the 

penetration depths of different radar bands vary with its wavelengths; the longer the 

wavelength, the greater the penetration depth. Therefore, the L-band radar penetrates 

deeper than the X-band sensor. In extremely dry conditions, the L-band SAR can 

penetrate up to a 1 meter in depth, but in most cases the radar penetration is typically only 

a few centimeters. The radar penetration can be valuable for detecting near-surface soil 

moisture; the backscatter strength increases as the soil moisture increases. 

31 



www.manaraa.com

 

 

  

 

 

  

 

 

 

  

3.5 Airborne and Space-borne Polarimetric SAR Systems 

Synthetic Aperture Radar is mostly a space-borne or airborne side-looking radar 

system which utilizes the flight path of the platform to synthesize a long aperture. SAR is 

the only practical technique to achieve high spatial resolution remote sensing imagery 

even from space platforms. In this research, airborne UAVSAR data and space-borne 

TerraSAR-X data has been used which is discussed in detail below. 

3.5.1 Airborne Radar – UAVSAR 

UAVSAR is a quad-polarized L-band (λ = 25 cm) airborne radar, was developed 

by NASA’s Jet Propulsion Laboratory (JPL) for acquiring repeat track SAR data. The L-

band quad-polarized data from UAVSAR describes the complete polarimetric signature 

of the objects in the target area, with a range bandwidth of 80 MHz, and support a 16 km 

range swath flown at a nominal altitude of 13,800 m. The exceptionally low noise 

equivalent sigma zero allows UAVSAR to detect targets with weak radar backscattering 

cross section and to improve the accuracy of geophysical measurements such as soil 

moisture and vegetation biomass. The key parameters of the UAVSAR instrument are 

given in Table 3.2 [8]. 
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Table 3.2 UAVSAR Instrument Key Parameters 

Parameter Value 

Frequency L- Band (1.26 GHz) 

Bandwidth 80 MHz 

Range Resolution 1.8 m 

Polarization Quad Polarization 

Raw ADC Bits 12 baseline 

Range Swath 16 km 

Look Angle 
Range 25° - 60° 

Transmit Power > 2.0 KW 

Altitude Range 2000 – 18000 m 

Using a precision real-time global positioning system and a sensor-controlled 

flight management system, the aircraft flies predefined paths with great precision. The 

radar is designed to be operable on a UAV, but for the flight used to collect data for this 

research it was flown on the NASA Gulfstream III aircraft. Figure 3.3 shows the NASA 

Gulfstream III aircraft with radar pod. For UAVSAR imagery, each pixel in the SLC file 

is a complex floating point data with 8 bytes / pixel. For example, each UAVSAR multi-

look pixel is derived from averaging 3 single-look pixels in range and 12 pixels in 

azimuth [9].  Multi-look data saves only the cross-products of the elements of the 

scattering matrix. Three of the files are complex 8 bytes per pixel (ShhShv*, ShhSvv*, 

ShvSvv*, where * means complex conjugate) and the other three files are real floating 

point data with 4 bytes per pixel (ShhShh*, ShvShv*, SvvSvv*). 
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Figure 3.3 NASA Gulfstream III aircraft with a pod housing the UAVSAR 

3.5.2 Space-borne Radar - TerraSAR-X 

TerraSAR-X is a German radar satellite which carries a high frequency X-band 

synthetic aperture radar sensor and can be operated in different modes and polarizations 

[10]. It is a side-looking radar based on active phased array antenna technology. The SAR 

sensor operates in different operation modes as given in Table 3.3. 
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Table 3.3 TerraSAR-X operation modes with swath width and resolutions 

Stripmap Spotlight (HS & SL) ScanSAR 
Swath Width (range) 30 km (single pol.) 

15 km (dual pol.) 
10 km @ 150 MHz 
chirp BW 
Azimuth: 5 / 10 km 
(HS / SL) 

100 km (only single 
pol.) 

Full performance 
incidence angle range 

20° - 45° 20° - 55° 20° - 45° 

Azimuth resolution 3.3 m (single pol.) 
6.6 m (dual pol.) 

1.1 m / 2.2 m (HS, 
single / dual pol.) 
1.7 m / 3.4 m (SL, 
single / dual pol.) 

17 m 
(1 look, 4 beams) 

The key parameters of this space-borne sensor are given in Table 3.4 [11]. 

Table 3.4 TerraSAR-X key parameters 

Parameter Value 

Radar Carrier Frequency 9.65 GHz 

Range Bandwidth 150 MHz 

Radiated RF Peak Power 2 kW 

Polarization HH, HV, VH, VV 

Incidence Angle Range 20° - 55° full 
performance 

Nominal Orbit Height at 
the Equator 514 km 

Revisit time 11 days 

Inclination 97.44° 

Normal Look Direction Right 

Pulse Repetition 
Frequency 2.0 kHz – 6.5 kHz 
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CHAPTER IV 

STUDY AREA AND DATA USED 

4.1 Study Area 

The Mississippi levee system represents one of the largest in the world, 

comprising over 3500 miles of levees. Detecting anomalies on the levee to identify 

problem areas is an important factor to consider to protect them from flooding. The study 

area for this research focuses on the mainline levee system of the Mississippi River along 

the eastern side of the river in Mississippi. The study area was selected based on the 

history of levee failure events occurring in the lower Mississippi valley. This history can 

facilitate the investigation of the use of remote sensing data to analyze physical factors 

that would indicate problems in levee conditions, whether they arise from moisture 

content, slope instability, hydraulic uplift, water seepage through levees, or underseepage 

resulting in sand boils. 

4.2 Data Used 

This study employed remote sensing data from multiple sources, primarily from 

polarimetric synthetic aperture radar data acquired by airborne and satellite-based sensors 

to characterize levee segments for variability, anomalies, changes in texture and other 

factors that would lend credible evidence to potential or actual problems with the levees 

in areas so identified. 
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4.2.1 UAVSAR L-band Data 

JPL’s UAVSAR flew over levees in our study area where we expected to find 

anomalies. A total of five multi-temporal data collections were made: 1) June 16, 2009; 

2) January 25, 2010, 3) April 28, 2011; 4) June 7, 2011; and 5) June 22, 2011. The 

UAVSAR 3-band color composite image is shown in Figure 4.1. The UAVSAR data 

acquired on June 16, 2009 and January 25, 2010 were used in this study as there were 

active slides during these two image acquisitions. 

Figure 4.1 Polarimetric UAVSAR 3 band (HH, HV, and VV) data shown in color 
composite along the lower Mississippi River. 

Image swath width is 20 km; total flight line length is 230 km. 
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4.2.2 TerraSAR-X X-band Data 

In addition to the airborne UAVSAR data, satellite-based radar data from 

Germany’s TerraSAR-X instrument have been investigated in this research. The 

SpotLight (SL) mode images provides a good balance between ground resolution and 

scene extent, and the majority of images were collected in this mode. All the images were 

right-looking from an ascending path as this gave maximum parallelism between the 

satellite orbit and the course of the Mississippi River in the study area. The SpotLight 

image shown in Figure 4.2, acquired on September 15, 2010 with an incidence angle of 

33° was used in the study as there was one active slide at the time of image acquisition. 

Figure 4.2 Color composite of dual-polarized (HH and VV) TerraSAR-X data of 
September 15, 2010. 
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4.3 Ground Truth (In Situ) Data 

In addition to the remotely sensed data, we relied on ground truth data to train, 

test, and validate the machine learning classifiers. To provide detailed information on 

soils on the levees in the study area, ground truth data was collected by both U.S. Army 

Corp of Engineers (USACE) and our research team. This data included the exact location 

and timing of slump slides, photographs of the vicinity, and the notes on grass height. 

USACE has a major responsibility for supporting flood risk management 

activities. The Corps of Engineers has constructed approximately 11,750 miles of riverine 

levees for shoreline protection, hundreds of locks and dams for navigation, and dams for 

multiple purposes including hydroelectric power generation and flood control [1]. The 

USACE maintains a national inventory of levee systems and makes the information 

available in the National Levee Database (NLD) [2].  It provides information about the 

location and condition of levees and floodwalls. USACE regularly inspects levees to 

monitor their condition, identify deficiencies, and verify that needed maintenance is 

taking place. The levee managers are responsible for the rehabilitation, evaluation, 

maintenance, and repair of the levees in a timely way to mitigate risk of catastrophic 

failures. Flood risks can be mitigated by protective structures and USACE builds berms 

or installs relief wells on levees to mitigate underseepage. The ground truth data which is 

used in this research was obtained from USACE Engineer Research and Development 

Center (ERDC) in Vicksburg, Mississippi. 

In addition, we took samples of soil moisture and measured soil electrical 

conductivity. GPS polygons were taken using a Trimble GPS on several slide and non-
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slide (healthy) parts of levees which were used as training masks in the classification 

tasks (Figure 4.3). 

Figure 4.3 Field data collection on Mississippi River levees near Albemarle Lake, MS. 

Levee vegetation consists mostly of grasses and weeds. Three types of grasses 

predominate on the levees in the study area are: Bermuda, Rye, and Johnson grass. In the 

field campaign we observed that grasses grown over areas with cracks and fractures are 

stressed for moisture compared to the grasses grown over healthy areas of the levee.  It 

was also observed that grasses growing in repaired slide areas were either of different 

type or had different vigor compared to the healthy levee [3]. The differences in 
41 
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vegetation growth (sparse or dense) and vegetation type (Bermuda grass, weeds etc.) 

influence the radar backscatter and are distinguishable in the imagery. The ground truth 

was supplemented by high resolution aerial photography from National Agriculture 

Imagery Program (NAIP) shown in Figure 4.4. The ground truth data from the 

Mississippi Levee Board with active slough slides during 2009 and 2010 radar imagery 

acquisitions and their repair status is given in Table 4.1. 

Table 4.1 Levee Slides Data from Mississippi Levee Board 

From Mississippi Levee Board (08 April 2011) 

Slide # 

(ArcGIS FID) 

Date Slide Appeared Date Slide Repaired 

17 October 2009 November 2009 

18 October 2009 November 2009 

20 August 2008 November 2009 

21 Not Available September 2010 

22 September 2009 April 2010 

25 February 2009 September 2010 
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Figure 4.4 National Agriculture Imagery Program (NAIP) imagery of August, 2008. 

The red dots on the image show the slide locations with slide numbers (ArcGIS FID). 
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CHAPTER V 

METHODOLOGY 

5.1 Automated Levee Target Recognition System 

The goal of the earthen levee classification is to develop machine learning 

algorithms and a set of features that could be used to identify areas on levees that have an 

increased likelihood of being vulnerable to failure under high water conditions. In this 

study, the focus is on the detection of slump slides using L-band and X-band SAR data. 

Several supervised and unsupervised classification algorithms have been applied to the 

SAR data for efficient levee classification with different set of features (DWT and 

GLCM). 

The unsupervised and supervised classification block diagrams are shown in 

Figure 5.1 and Figure 5.2. The UAVSAR multi-polarized, multi-look radar image and 

TerraSAR-X dual polarization data are used in the classification tasks. For unsupervised 

classification, the levee is segmented into a 40 meter buffer and the texture features are 

extracted from the original SAR data. Not all of the components of the feature set useful, 

so only the useful features were selected and used in the classification tasks. In the 

supervised approach, the training masks were drawn based on the ground truth data and 

the classifiers were run on the extracted feature set. 
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  Figure 5.1 Block diagram of Unsupervised Classification approach 
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Figure 5.2 Block diagram of Supervised Classification approach 

5.2 Feature Extraction 

In general, feature extraction is a two-step process, the first step being feature 

construction and the second step feature selection. Feature construction is the process 

where a feature set is extracted from the original dataset. In this research, polarimetric 

and texture features are extracted from the SAR data. The polarimetric features are pixel-

based and the texture features are window-based. Not all the components of the feature 

set are useful, so only the useful features were selected and used in the classification 

tasks. 
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5.2.1 Polarimetric Decomposition Features: Entropy (H), Anisotropy (A), 
Scattering Angle (Alpha) 

5.2.1.1 Polarimetric Decomposition 

In Polarimetric SAR (PolSAR), the transmitted signal is polarized and different 

polarizations of the backscatter signal are detected. Polarimetric SAR measurements can 

be used to retrieve different types of land use and land cover information. PolSAR data 

can also be used to estimate soil moisture. The backscattering properties of the target are 

described by a 2x2 complex backscattering matrix S [1] which represents the reflectivity 

of the area and can be expressed as: 

Shh ShvScattering Matrix S = [ ] (5.1)
Svh Svv 

where h indicates horizontal polarization and v indicates vertical polarization. 

In order to relate the polarimetric backscatter to the physical properties of the 

scatterer, the target vector Kp is represented in the 3-D Pauli basis as shown below [2]. 

𝑆ℎℎ + 𝑆𝑣𝑣 
1

Scattering Matrix K⃗⃗ p = [𝑆ℎℎ − 𝑆𝑣𝑣 ] (5.2)
√2 

2𝑆ℎ𝑣 

(Shv = Svh due to symmetry) 

The coherency matrix [T] contains the second order statistical information about 

the polarization and is defined as the product of the target vector Kp with its complex 

conjugate transpose and is given by: 

∗T Coherency Matrix [T] = K⃗⃗ p . K⃗⃗ (5.3)p 

where * and T represent complex conjugate and transpose, respectively. 

For single look or multi-look processed data, the coherency matrix is defined as: 
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⃗⃗ ⃗⃗ ∗𝑇⃗⃗⃗ 〉 =𝑇 = 〈�⃗⃗⃗��⃗�
 . 𝐾𝑝 

∗〈⌊𝑆𝐻𝐻 + 𝑆𝑉𝑉⌋
2〉 〈(𝑆𝐻𝐻 + 𝑆𝑉𝑉)(𝑆𝐻𝐻 − 𝑆𝑉𝑉)

∗〉 2〈(𝑆𝐻𝐻 + 𝑆𝑉𝑉)𝑆𝐻𝑉〉 
1 ∗[〈(𝑆𝐻𝐻 − 𝑆𝑉𝑉)(𝑆𝐻𝐻 + 𝑆𝑉𝑉)

∗〉 ⌊𝑆𝐻𝐻 − 𝑆𝑉𝑉⌋
2 2〈(𝑆𝐻𝐻 − 𝑆𝑉𝑉)𝑆𝐻𝑉〉](5.4)

2 
2〈𝑆𝐻𝑉(𝑆𝐻𝐻 + 𝑆𝑉𝑉)

∗〉 2〈𝑆𝐻𝑉(𝑆𝐻𝐻 − 𝑆𝑉𝑉)
∗〉 4〈|𝑆𝐻𝑉|

2〉 

The diagonal elements T11, T22, and T33 give the surface, double-bounce, and 

volume scattering information about the target. The VV backscatter (σ0vv) dominates at 

the surface scattering areas, HV backscatter (σ0hv) dominates in the volume scattering, 

and HH (σ0hh) dominates in double bounce areas. 

5.2.1.2 Polarimetric Features 

Cloude and Pottier [2] [3] developed a polarimetric decomposition theorem based 

on eigenvector analysis of the 3x3 coherency matrix T3. The decomposition parameters 

entropy (H), scattering angle (α), and anisotropy (A) are extracted from the coherency 

matrix [2] [3]. 

5.2.1.2.1 Entropy (H) 

The parameter entropy (H) is a measure of randomness in the distributed scatterer 

and is defined as the logarithmic sum of the eigenvalues as [4] 

3𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐻 = −∑ 𝑝𝑖 𝑙𝑜𝑔3(𝑝𝑖) (5.5)𝑖=1 

𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 = 3 
𝜆𝑖 (5.6)

∑𝑘=1 𝜆𝑘 

with pi corresponding to the probability of the eigenvalue λi. 
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For smooth surfaces, H becomes zero, implying a non-depolarizing scattering and 

increases with surface roughness. Low entropy (H < 0.3) indicates single scattering and H 

> 0.7 indicates random scattering. 

5.2.1.2.2 Anisotropy (A) 

The anisotropy parameter is used to distinguish different types of scattering 

mechanisms with different eigenvalue distributions. This parameter measures the 

importance of the second and third eigenvalues of the Eigen decomposition and is given 

by: 

λ2−λ3Anisotropy 𝐴 = (5.7)
λ2+λ3 

Anisotropy can be considered a measure of the lack of azimuth symmetry or as an 

indication of the small-scale surface roughness. For azimuthally symmetric surfaces, λ2 = 

λ3 and A becomes zero. The anisotropy can be employed as a source of discrimination 

mainly when the entropy values are greater than 0.7 [4]. For low entropy values, the 

second and third eigenvalues are affected by noise and consequently anisotropy is also 

very noisy. Anisotropy is highly affected by noise [5]; therefore UAVSAR provides 

better anisotropy evaluations because UAVSAR has higher signal-to-noise ratio (SNR). 

5.2.1.2.3 Mean Alpha Angle (α) 

The parameter α is an indicator of the type of scattering mechanism occurring, 

which ranges from 0 to 90° and is defined as: 
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3𝛼 = ∑ (𝑝𝑖 𝛼𝑖) (5.8)𝑖=1 

α = 0° if the target has a dominant surface or single-bounce scattering component, the 

value of α = 45° indicates volume scattering, and α = 90° corresponds to double-bounce 

scattering. 

By interpreting the analysis as a measure of entropy and scattering angle, the 

classification of the scene can be separated into nine scattering zones and is shown in 

Figure 5.3 [2] [7].  

Figure 5.3 Entropy – Alpha (H - α) plane showing different scattering mechanisms 

5.2.2 Feature Extraction using Discrete Wavelet Transform (DWT) 

Texture is an important feature to the classification of land cover in radar images 

because it has the ability to examine the signal at different scales. In this research, a 
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wavelet-based texture feature set is computed for the polarimetric multi-band radar 

imagery and utilized in the classification tasks. 

As shown in Figure 5.4, the wavelet decomposition of an image generates four 

sub-images: 3 detail images and 1 approximation image. In each decomposition level, the 

approximation image is passed through low pass and high pass filters to generate the next 

level of coefficients. The detail images contain the high frequency components, whereas 

the approximation image contains the low frequency components. 

The DWT is used to decompose an original signal x[n] into approximation Aj(k) 

and detail Dj(k) coefficients by passing x[n] through a series of high-pass filters g[n] to 

analyze the high frequencies and low-pass filters h[n] to analyze the low frequencies [8] 

[9].  Filtering a signal corresponds to the mathematical operation of convolution of the 

signal with the impulse response h[n] of the filter. 

∞𝑥[𝑛] ∗ ℎ[𝑛] = ∑ 𝑥[𝑘]. ℎ[𝑛 − 𝑘] (5.9)𝑘=−∞ 

After filtering, half of the samples can be eliminated according to the Nyquist rule. 

Therefore, the output of HPF and LPF would be: 

𝑦ℎ𝑖𝑔ℎ[𝑘] = ∑𝑛 𝑥[𝑛]. 𝑔[2𝑘 − 𝑛] (5.10) 

𝑦𝑙𝑜𝑤[𝑘] = ∑𝑛 𝑥[𝑛]. ℎ[2𝑘 − 𝑛] (5.11) 

After all the decompositions, the DWT of the input signal x[n] is obtained by 

concatenating all coefficients from the last level of decomposition. The prominent 

frequencies in the original signal will appear as high amplitudes in that region of DWT. If 

the main information of the signal is in the high frequencies, narrower windows are 

appropriate, which results better time (or space) resolution.  If the main information of 
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the signal is in the low frequencies, wider windows are appropriate to result better 

frequency resolution. 

Figure 5.4 Schematic diagram of one-level 2-Dimensional DWT image decomposition 
process 

5.2.3 Grey Level Co-Occurrence Matrix (GLCM) Features 

GLCM is a classical second order statistical tool and is very useful for 

characterizing the texture features.  GLCM-based texture feature extraction has been a 

popular method in remotely sensed images. It describes the texture of images based on 

how frequently two grey levels appear according to a position operator within an image. 

This technique is very effective because it compares the joint probability of the grey 

levels from pairs of pixels along a given distance and direction. . Because of this, GLCM 

is able to measure positional information as well as standard statistics such as mean and 

variance. The combination of these two types of information enables GLCM to 

distinguish a very wide variety of textures. The standard algorithm for GLCM is 
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(1) quantize the image (this reduces the number of gray levels in the image, which allows 

a smaller co-occurrence matrix to be used later); (2) extract a region of interest from the 

image to get a local texture measurement; (3) compute the co-occurrence matrix on the 

region of interest by using the given position operator; and (4) compute the feature with a 

mathematical formula that uses the co-occurrence matrix as input. The GLCM features 

are extracted from four spatial orientations: horizontal, left diagonal, vertical, and right 

diagonal corresponding to 0°, 45°, 90°, and 135°, and six features have been computed on 

each matrix. The features computed in this study are: energy, correlation, variance, 

homogeneity, entropy, and inertia which are tabulated in Table 5.1. Experiments were 

conducted with different block size windows (5x5, 7x7, 9x9, 11x11, and 13x13), and the 

classifiers are trained and tested with this extracted feature data, and the performance has 

been evaluated. 
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Table 5.1 GLCM Feature Calculation 

5.3 Radar Data Classification 

5.3.1 Unsupervised Classification - RX Anomaly Detector 

Recently, anomaly detection has become an important application for target 

detection. Detecting anomalies in the radar imagery necessitates the task of locating 

pixels with spectral signatures that are significantly different from the background. Reed 

and Yu developed a method referred to as the RX detector [10], which has shown success 

in anomaly detection of multispectral and hyperspectral data [11]. The RX detector is 

often presented as a benchmark for anomaly detection by finding targets that have 

spectrally different signatures from their surroundings. RX Anomaly detector, a training– 

free unsupervised classification scheme, typically detects signatures that are distinct from 

the surroundings with no prior knowledge. These unsupervised techniques are very fast 
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and do not depend on ground truth information, so these results can guide levee managers 

to investigate the areas shown as anomalies in the classification map. 

Essentially, the algorithm uses the covariance matrix, which calculates the 

Mahalanobis distance from the test pixels to the mean of the background pixels. In 

multidimensional space, the well-known Mahalanobis distance is used to identify pixels 

that lie far from the mean. Suppose L is the number of spectral bands and r is an Lx1-

column pixel spectral vector of the image, then the RX detector (RXD) implements a 

filter specified by: 

)()()( 1    rKrr LxL
T

RXD (5.12) 

where μ is the global sample mean of the image subset (the mean of each spectral 

band) and KLxL is the sample covariance matrix of the image. 

5.3.2 Supervised Classification 

5.3.2.1 Support Vector Machine (SVM) Classification 

Support vector machine (SVM) is a state-of-the-art classification method 

introduced by Vapnik [12] [13]. It is a powerful supervised learning method for analyzing 

and recognizing patterns. SVMs discriminate two classes by fitting an optimal separating 

hyperplane to the training data within a kernel-induced feature space. A nonlinear kernel 

function in the SVM framework helps to map nonlinear separation in the original space to 

a linear separation in the kernel-induced feature space. A classification problem with n 

classes will be divided into several binary sub-problems. The basic concept of support 

vector machines for a linearly non-separable case aims at the definition of a separating 

hyperplane in a multi-dimensional feature space that maximizes the marginal distance 
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from the nearest support vector of each class. The multi-dimensional feature space is 

mapped by a kernel function, in which all the computations are done in the original 

feature space [14] [15] [16]. The redistributed data enable the fitting of a linear 

hyperplane between the training samples of two classes. The SVM training requires the 

estimation of the kernel parameter and the regularization parameter. These parameters are 

usually determined by a grid search by testing possible combinations. Suppose we have l 

observations, and each observation consist of a pair: a vector xi ∈ Rn, i = 1, …., l and 

the associated truth is yi. 

Figure 5.5 shows the linear separating hyperplane for the separable case, and the 

solid circle and squares on the margin are called support vectors. 

Figure 5.5 SVM hyperplane with samples from two classes 

The advantage of SVM is that it works well with small training datasets. The 

kernel function plays a critical role in the SVM training and classification [17]. The idea 
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of a kernel function is to enable operations to be performed in the input space rather than 

the high dimensional feature space. Some commonly implemented kernel functions are 

the linear kernel, polynomial kernel, and the Gaussian radial basis function (RBF) kernel. 

The SVM has another set of parameters called hyperparameters and these are soft margin 

constant ‘C’ and the width of the Gaussian kernel γ (1/2σ2) or degree of the polynomial 

kernel. 

The RBF with a Gaussian form is given as 

)
2

||||
exp(),( 2

2



ji
ji

xx
xxK


 (5.13) 

where σ is a width parameter characterizing the RBF.  The value of σ has an impact on 

the generalization ability in the kernel induced space. Therefore, as the value of σ 

increases, the generalization ability in the kernel based system increases. 

In this method, the input data are first transformed into a feature space (possibly 

with a higher dimension than the original data) either linearly or non-linearly based on a 

kernel function. Next, a hyperplane that separates the classes is computed by applying an 

optimization method. 

5.3.2.2 k-Nearest Neighbor (k-NN) Classifier 

k-NN is one of the simplest but widely used machine learning algorithms. This 

algorithm is a straight forward extension of nearest the neighbor (NN) classifier. Instead 

of using one sample closest to the testing point, the k-NN classifier chooses the k nearest 

samples from training data X. The k-nearest neighbor query starts at the test point xo and 

grows a spherical region until it encloses k training samples. The classifier finds the set of 
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k nearest neighbors in the training set to xo and then classifies xo as the most frequent 

class among the k neighbors. Consider a dataset with training samples n
iixX 1}{  in d-

dimensional feature space Rd and class labels ωi ∈ {1, 2, …, C}, where C is the number 

of classes, and n is the total number of training samples. Commonly, Euclidean distance 

is used to compute the distance measure between training sample xi and given testing 

sample. 

Consider the outcome of k-NN based on 1 nearest neighbor for the example 

shown in Figure 5.6. In this case, k-NN will predict the test sample (red circle) with ‘+’ as 

it is closer to it. The Euclidean distance is used to compute the distance between training 

sample and the given testing sample. When k = 2, k-NN will not be able to classify the 

outcome of the testing sample since the second closest sample is a ‘-‘, and both the plus 

and minus signs achieve the same score. If k = 5, the test sample is classified as ‘-‘ as 

there are 3 minus signs closest to the testing sample. 

Figure 5.6 k-NN classification approach 
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In this research the k-NN algorithm was tested with multiple k values and the 

results were compared with SVM classifier. 
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CHAPTER VI 

EXPERIMENTAL RESULTS AND ANALYSIS 

6.1 RX Anomaly Detector Classification Results 

RX Anomaly detector, a training–free unsupervised classification scheme 

typically detects signatures that are distinct from the surroundings with no prior 

knowledge. These unsupervised techniques are very fast and do not depend on ground 

truth information, so these results guide levee managers to investigate the areas shown as 

anomalies in the classification map. 

Surface roughness is an important property that can be used to distinguish slump 

slides as the radar backscatter is strongly influenced by the surface roughness. Therefore, 

textural features derived from Synthetic Aperture Radar imagery using the discrete 

wavelet transform (DWT) technique have been used in the classification tasks.  The main 

parameters to be considered in DWT feature extraction include the choice of mother 

wavelet function, and the neighborhood window size. For the levee application, the 

classification algorithms were tested with different mother wavelets and window sizes. 

The Daubechies mother wavelet with a window size of 4 and one decomposition level 

from each of the radar polarization channels gave the best performance, so these features 

were used as inputs to the classifiers. 
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6.1.1 UAVSAR June 2009 Image Classification 

In this study, a 7.7 km length subset of UAVSAR image acquired on June 16, 

2009 was used in the analysis and the georeferenced layers used in the analyses have 

been masked by a 40 meter buffer from the crown of the levee on the river side. The 

important factors that affect the radar backscatter intensity are the radar frequency, 

polarization, and incidence angle. The incidence angle of the UAVSAR data varies from 

25° - 60° across the image swath.  The variations in incidence angle affect the radar 

backscatter, so the study area with constant levee orientation was analyzed in this work. 

In this study area, a total of 10 slump slides and 2 stability berms were present and 

labeled with numbers 14 to 25. The geographic locations of these are marked as black 

and green circles overlaid on the NAIP optical image as shown in Figure 6.1. The area 

located to the south of slide 24, marked with a solid green circle, was identified as a slide 

in 2013 by the Mississippi Levee Board. At the time of image acquisition, five of these 

slides were active: slide 20, 21, 23, 24, and 25. These are highlighted in red in the ground 

truth Table 6.1, created from data obtained from the levee board. 

The RX Detector (RXD) unsupervised classification algorithm was implemented 

on the extracted features of the SAR data. The output generated by RXD is a grayscale 

image; the larger the value of the pixels, the more anomalous the pixels would be. For 

visualization purposes, the range of values of the output are color-coded. Based on the 

available field data and field visits, the location of the slides were known before the 

classifier detected as an anomaly. The results show that the classifier was able to identify 

the slide locations since the pixels in that area had higher values of the normalized 

Mahalanobis distance. 
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The scatter plot in Figure 6.2 shows the classifier output which is the normalized 

Mahalanobis distance values to see the distribution.  There were some outliers which 

have very high Mahalanobis distance values, and from the NAIP image it is clear that 

these are due to trees on the levee as shown in Figure 6.3. To find a threshold value to 

detect the slump slides, a histogram for a narrower range of Mahalanobis distance values 

(within a range of 0.001 – 0.002) was plotted as shown in Figure 6.4.  Various threshold 

values were examined with the goal of maximizing the percentage of true positives (slide 

pixels) and minimizing the percentage of false positives. The threshold is used to identify 

the true positives which are the slide pixels. The threshold value depends on the length of 

the levee segment and the width of the levee buffer. A threshold of 0.0019 was chosen 

and the pixel values greater than this threshold were considered to be classified as slide 

pixels and the rest as healthy levee pixels. This resulted in over 90% true positives and 

less than 30% false positives. The classification map of RX Detector output is color-

coded with a range of values as shown in Figure 6.1. The pixels with values greater than 

the threshold are color coded in blue. The slide dimensions were provided by the 

Mississippi Levee Board and from the results, it is obvious that the shape of the slides 

were clearly distinguishable from the healthy levee area. The results also show that there 

were some false positives to the north of Slide 16, which could be due to the radar 

shadows of the trees on the toe of the levee. Figure 6.5 shows the enlarged view of the 

classification output for the area around active slides 20 and 21.  From this output, we see 

some false positives located where a new slide (slide 17) later appeared (in October 

2009). The cluster of false positives shown in Figure 6.6 near slide 22 also later became 

a slump slide in September 2009.  In addition, some false positive pixels seen to the south 
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of slide 24 and showed new slide activity in 2013. This location is marked with a solid 

green circle in Figure 6.7. 

Figure 6.1 2009 NAIP optical imagery with locations of known slump slides 16 – 25 
and the anomaly detector output on the foreground. 

66 



www.manaraa.com

 

 

  
 

 

Table 6.1 Slide Ground Truth Data from Mississippi Levee Board, with slides active 
at the time of the 2009 radar image highlighted in red 
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Figure 6.2 Scatter plot of the RX anomaly detector output, which is the normalized 
Mahalanobis distance, for UAVSAR 2009 image. 
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Figure 6.3 (a) Outliers in the RX Detector output due to trees on the levee, which have 
higher Mahalanobis distance values that are very different from the rest of 
the levee (b) NAIP optical image of the study area subset. 

Figure 6.4 Histogram of the normalized RX Detector classification output for 
UAVSAR 2009 image 
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Figure 6.5 RX Anomaly detector classification output for active slides 20 – 21 at the 
time of UAVSAR image acquisition on 16 June 2009. 

The pixels labeled as slides based on the selected threshold are blue in color. Slides 17 
and 18 were appeared in October 2009, after the image date. 
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Figure 6.6 RX Anomaly detector classification output for middle part of the levee 
segment which cover slides 20 -22. 

Slide 22 appeared in September 2009, after the UAVSAR image date 16 June 2009. 
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Figure 6.7 Lower part of the levee segment which contain three slides (23 – 25) active 
at the time of image acquisition on 16 June 2009.  

A new slide appeared later at a location flagged as anomalous during the 2009 image 
analysis. 

6.1.2 UAVSAR January 2010 Image Classification 

After the 16 June 2009 radar image acquisition, UAVSAR flew over the 

Mississippi River levees on 25 January, 2010. To further analyze the performance of the 

anomaly detector algorithm, a 3.2 km length subset was used. Over this study area, a total 
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of 6 slump slides and 2 stability berms were present and these were labeled with numbers 

14 to 21. At the time of image acquisition there were two unrepaired slides, numbered 15 

and 21, and all other slides were repaired. The RX detector unsupervised classifier 

algorithm was implemented and a histogram for the normalized Mahalanobis values was 

plotted to see the distribution. Based on the available ground truth data the location of the 

slides were known and a threshold has been chosen to identify the slide pixels from the 

classified output. A threshold of 0.004 was chosen which resulted in over 90% true 

positives and less than 20% false positives. The classifier output is shown in Figure 6.8. 

A small number of slide pixels were found at repaired slides -- especially at slides 20 and 

14, and some other false positives north of slide 16. These false positives are associated 

with levee construction during the time of image acquisition as shown in Figure 6.9. 
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Figure 6.8 RX Anomaly detector classification map for 25 January 2010 UAVSAR 
image. 

The two active slides were classified shown in bright blue color based on the threshold 
value. 
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Figure 6.9 Classification output of 25th January 2010 UAVSAR image with NAIP 
optical imagery background which was used to confirm locations of active 
and repaired slides and also the construction areas on the levee 

6.1.3 Impact of Polarization and Frequency on Anomaly Classification 

In this study, the ability of each polarization channel in detecting the slump slides 

with different frequency bands of synthetic aperture radar data using the anomaly 

detection algorithm was investigated. The UAVSAR multi polarized, multi-look radar 

image acquired on 25 January, 2010 and the TerraSAR-X dual polarized high resolution 

spotlight imagery acquired on 15 September, 2010 were used in the analysis. By the time 

of both of these image acquisitions, there was one active slump slide (latitude: 32.5685, 

longitude: -91.0393) north of Vicksburg, Mississippi. A subset of 0.7 km long with this 

active slide was chosen as the area of analysis and the georeferenced layers used in the 
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analyses were masked by a 40 meter buffer from the crown of the levee on the river side. 

The ground truth data was collected by the US Army Corp. of Engineers (USACE) and 

precise boundaries of the slump slide were mapped with polygons drawn using a GPS 

instrument during field data collection trips. The ground truth data contains the location 

and timing of slump slide appearance, dimensions of the slides, and their repair status. 

The spatial resolution for the UAVSAR and TerraSAR imagery are 5.5m and 1m 

respectively. In this study, the HH and VV backscattering behavior of the X-band and L-

band radar backscatter in detecting the slump slide have been investigated. 

The anomaly detection was performed by using each polarization channel of the 

SAR data separately and the performance was compared with that of using the stack of 

both polarizations. From the classifier output, which is the normalized Mahalanobis 

distance values, a threshold was chosen from histogram analysis to determine the slide 

pixels. There were some outliers which have very high Mahalanobis distance values, and 

from the NAIP image it is clear that these are due to trees on the levee. These outliers 

have distance values greater than 0.5 and were ignored in the plot of the histogram 

distribution shown in Figure 6.10. The threshold values within a range of 0.15 – 0.23 was 

chosen to identify the slump slide pixels and the distance values greater than 0.23 were 

identified as false positives. The classification map of the anomaly detector output for the 

UAVSAR image with each polarization channel data considered separately and together 

are shown in Figure 6.11 and the classification maps of the TerraSAR-X image are 

shown in Figure 6.12. 
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Figure 6.10 Histogram distribution of RX anomaly detector output for January 2010 L-
band UAVSAR image subset.  

The normalized Mahalanobis distance values greater than 0.5 were ignored due to 
outliers on the levee. 

Figure 6.11 Classification map of RX anomaly detector results for L-band UAVSAR 
imagery:  

(a) with HH polarization data, (b) with VV polarization data, and (c) with HH and VV polarization data 
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Figure 6.12 Classification map of RX anomaly detector results for X-band TerraSAR-X 
imagery:  

(a) with HH polarization data, (b) with VV polarization data, and (c) with both HH and 
VV polarization data 

The classification results show that the anomaly detector performed well when 

both polarizations were used in the classification analysis. The total number of slide 

pixels in the UAVSAR imagery is 44 with a pixel size of 5.5m x 5.5m. When both the 

HH and VV polarization data are used for the classification analysis, 21 pixels were 

classified as slump slide which gives an accuracy of 47.72%. However, when individual 

polarization data is considered in the analysis, the accuracy was 9% and 18% for the HH 

and VV polarizations respectively. 

The total slump slide pixels in the TerraSAR-X subset are 1499 with a pixel size 

of 1m x 1m. As shown in Figure 6.12, a threshold of 0.3623 was chosen for the X-band 

anomaly output and the pixels greater than this threshold were considered as slide pixels. 

The anomaly output resulted in 337 pixels being classified as slide pixels when both HH 
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and VV polarization data were used in the classification analysis which gives an accuracy 

of 22.4%. When the algorithm was implemented with individual polarization data, the 

accuracies were reduced to 11.27% and 8.33% for the HH and VV polarization data 

respectively. 

The receiver operating characteristic (ROC) curves are generated by plotting the 

probability of detection (true positive rate) against the false positive rate to provide a 

quantitative performance comparison. The ROC curves are generated based on ground 

truth information about the slump slide location and dimensions. The precise boundaries 

of the slide were mapped with polygons drawn using a GPS instrument during filed data 

collection trips. Therefore, the number of slide pixels are known from the ground truth 

polygons. From the classifier’s output the true positives and the false positives are 

estimated and the ROC curves are generated based on this result. For example, if the 

classifier output is represented in terms of a confusion matrix as given in Table 6.2, the 

true positive rate and false positive rate will be computed as shown below. 

Table 6.2 Confusion matrix for a binary classifier 

Positive Negative 

Test Positive TP (True Positive) FP (False Positive) 

Test Negative FN (False Negative) TN (True Negative) 

TP_rate (True Positive Rate) = Positives correctly classified (TP) / Total Positives 

= TP / (TP + FN) 

FP_rate (False Positive Rate) = False Positives (FP) / Total Negatives 

= FP / (FP + TN) 
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The ROC curve is a metric used to check the quality of classifiers. It gives the 

probability of detection of slide pixels (True Positives Rate) against the false positive rate 

at various threshold values. The ground truth mask for the study area shown in Figure 

6.13 has two classes: slump slide and healthy levee. The polygon in Figure 6.13 

represents the slump slide area (mask value for this polygon = 1) and the area outside the 

polygon is the healthy levee area (mask value = 0). The normalized output of the RX 

anomaly detector (a row vector r) ranges in the interval [0, 1] and the threshold values (τ) 

are applied across this interval to RX detector output. In this case, the anomaly map is 

defined as the area where mask = 1, and healthy levee map is defined as the area where 

mask = 0. For each threshold, FPR and TPR are calculated and plotted on x and y axis. 

The true positive rate and false positive rate are calculated as: 

TP_rate = number of outputs greater than the threshold (r > τ) / number of 1 (slump slide) 

targets, and 

FP_rate = number of outputs less than the threshold / number of 0 (healthy levee) targets 

Figure 6.14 shows the ROC curve of the anomaly detector output for the 

UAVSAR image analysis, when both polarization channels (HH and VV) are considered 

together. Figure 6.15 shows the ROC curve of the anomaly detector output for the 

TerraSAR-X image analysis, when both the polarization channels (HH and VV) are used. 

The results show that the anomaly detector output from the dual-pol L-band UAVSAR 

outperformed the dual-pol X-band TerraSAR-X anomaly detection results. 
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Figure 6.13 (a) Ground truth mask with two classes: slump slide (mask = 1) and healthy 
levee (mask = 0) (b) RX Detector output for the image subset. 

Figure 6.14 ROC curve of anomaly detector output for UAVSAR data for detecting the 
slump slide pixels. 
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Figure 6.15 ROC curve of anomaly detector output for TERRASAR-X data for 
detecting the slump slide pixels. 

6.2 Supervised Classification 

This research analyzes the ability to detect slump slides on levees with Synthetic 

Aperture Radar (SAR) data using supervised machine learning algorithms. This study 

examines two of the most popular machine learning algorithms: k-nearest neighbor (k-

NN) and support vector machines (SVM) to classify the radar imagery. In this study, a 

1.1 km wide study area has been analyzed in detail with the described supervised learning 

methods. The discrete wavelet transform (DWT) and grey level co-occurrence matrix 

(GLCM) texture features extracted from the SAR backscattering coefficients HH, HV, 

and VV were used as feature data to the classifiers. For DWT based classification, the 
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wavelet coefficients were computed from the SAR data with different window sizes. 

Other parameters considered include the choice of mother wavelet function and the 

neighborhood window size. The wavelet features, with one decomposition level from 

each of the radar polarization channels, were used in this study and the classifiers were 

tested with different wavelet window sizes. For GLCM based classification, the GLCM 

features are extracted from four spatial orientations: horizontal, left diagonal, vertical, 

and right diagonal corresponding to (0°, 45°, 90°, and 135°) and six features have been 

computed on each matrix. The features computed in this study are: energy, correlation, 

variance, homogeneity, entropy, and inertia. Experiments are done with different block / 

window sizes (5x5, 7x7, 9x9, 11x11, and 13x13), the classifiers were trained and tested 

with this extracted feature data, and the performance has been evaluated. 

Our experimental results show that inclusion of textural features derived from the 

SAR data using discrete wavelet transform (DWT) features and grey level co-occurrence 

matrix (GLCM) features improved the overall classification accuracies. 

6.2.1 Support Vector Machine (SVM) Classification with Discrete Wavelet 
Transform (DWT) features for UAVSAR 2-class subset 

SVM, a nonparametric classification method, has been used successfully in 

remote sensing studies. The advantage of SVM is that it works well with small training 

datasets, which is very important for levee applications as the training data is very small. 

While training an SVM to give better accuracies, a number of factors need to be 

considered including: a) preprocessing the data; b) type of kernel; and c) setting the 

parameters of the SVM and the kernel. The kernel function plays a critical role in SVM 
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training and classification. The other parameters considered are called hyper parameters 

and these are the soft margin constant 'C' and the width of the Gaussian kernel γ =1/(2σ2). 

The UAVSAR imagery acquired on 16 June 2009 was used in the analysis. Each 

pixel of multi-look UAVSAR imagery is 5.5 m x 5.5 m, and the size of the subset is 1.1 

km along the levee (164 x 94 pixels), which had three reported slide events at the time of 

image acquisition. As shown in Figure 6.16 the levee is divided into two classes, healthy 

levee and slump slide, and the training masks were designed based on the ground truth 

data. This subset has a total of 102 slump slide pixels and 549 healthy levee pixels. 

84 



www.manaraa.com

 

 

 

 

 

 

 

Figure 6.16 Training mask for UAVSAR subset with two ground truth classes: 1. 
Slump slide and 2. Healthy Levee with 3-band UAVSAR (HH, HV, and 
VV) image at the background. 

Wavelet features were extracted with different window (block) sizes: 4, 8, and 16. 

The Daubechies mother wavelet was used. The SVM algorithm was implemented on the 

extracted texture features of the SAR dataset using a Gaussian radial basis function 

(RBF) kernel and the performance of the classification was tested with different values of 

the kernel parameter σ. Figure 6.17 shows the overall classification accuracies of the 

SVM classifier with varying sigma parameter for the RBF kernel and different window 
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size values. This is a two-class problem with uneven pixel counts in these two classes; the 

slump slide class has less pixels than the healthy levee class.  In this case, 10% of the 

labeled samples were used as training and the rest of the pixels were predicted by the 

classifier. The results showed that the SVM classifier performed well with DWT window 

size 8 x 8 with the highest accuracies of 94.5% for the slide class and 95.6% for the 

healthy levee class. The performance of the classifier was also compared by using only 

the three radar polarization channel data, HH, HV, and VV (without wavelet features), 

which resulted in lower classification accuracies. The accuracy assessment was 

conducted five times, and the experimental results were averaged. The confusion matrix 

with σ = 0.08 and wavelet block size B = 8 is given in Table 6.3, and the classification 

map with σ = 0.08 and B = 8 is shown in Figure 6.18. 

The classifier performance was also estimated with different sets of training 

samples and the results are tabulated. Figure 6.19 and Figure 6.20 show the accuracies of 

the classifier when 5% and 30% of the labeled samples were used to train the classifier. 

The accuracies of slide and healthy classes are 91.7% and 95.1%, respectively, when 5% 

of the labeled samples were used to train the classifier, and with 30% of the labeled 

training samples, the highest accuracies achieved were 95.8% and 98.6% with DWT 

window size 8 and σ = 0.08. The results showed that the classifier performed better with 

higher number of labeled samples used to train the classifier. 
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Figure 6.17 Classification accuracy (%) of SVM classifier with DWT features and with 
different block / window size (B). 

10% of the labeled samples were used to train the classifier and Daubechies mother 
wavelet with one decomposition level was used. 

Table 6.3 Confusion Matrix of SVM Classifier output for UAVSAR dataset with σ = 
0.08 and wavelet block size B = 8. PA is Producer’s Accuracy; UA is 
User’s Accuracy 

Slump Slide Healthy Levee PA 

Slump Slide 87 4 95.6 

Healthy Levee 20 474 95.9 

UA 81.3 99.2 93.0 
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Figure 6.18 SVM Classification map for UAVSAR dataset with σ = 0.08 and wavelet 
block size B = 8 
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Figure 6.19 Classification accuracy (%) of SVM classifier with 5% of the labeled 
samples used to train the classifier. 

B = 4 B = 8 B = 16 Without Wavelet 

Figure 6.20 Classification accuracy (%) of SVM classifier with DWT features and with 
different block / window size (B). 30% of the labeled samples were used to 
train the classifier. 
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6.2.2 Performance comparison of k-Nearest Neighbor (k-NN) and Support 
Vector Machine (SVM) classifiers with GLCM and DWT features for 
UAVSAR 4-class subset 

In this study, the subset which was used in the previous analysis was used with a 

different set of ground truth classes. Four classes were considered in this analysis based 

on the ground truth information and these classes were labeled as: slump slide, healthy 

levee, stressed vegetation, and the levee road. The UAVSAR subset and the ground truth 

mask are shown in Figure 6.21 (a) and (b), respectively. Vegetation type and growth rate 

differences were observed during the field visits between cracked surfaces and stable soil 

segments on earthen levees in the lower Mississippi River valley. Therefore the stressed 

vegetation growing over unstable levee segments was taken as a labeled class in this 

subset. Each pixel of multi-look UAVSAR imagery is 5.5 m x 5.5 m and the size of the 

subset is 1.1 km along the levee (164 x 94 pixels) which had three reported slide events at 

the time of image acquisition. The number of pixels in each of these classes are: 76 slide 

pixels, 86 healthy levee pixels, 58 stressed vegetation pixels, and 43 levee road pixels. 

DWT and GLCM texture features were extracted and applied to SVM classifier as well as 

k-NN classifier. The classifiers were trained with 30% and 50% of the randomly selected 

labeled samples. The accuracy assessment was conducted ten times, and the experimental 

results were averaged. 

The results showed that both k-NN and SVM classifiers performed well with 

GLCM features. The classifier performance with GLCM features outperformed DWT 

features when fewer labeled samples (30%) were used to train the classifier. Between 

both the classifiers, the SVM outperformed the k-NN by attaining highest classification 

accuracies. With DWT features, the k-NN classifier gave overall accuracy of 62% 
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whereas the GLCM features outperformed with an accuracy of 82% by using 30% of the 

labeled samples. The SVM classifier gave highest accuracies of 50% and 86.8% with 

DWT and GLCM features, respectively, when 30% of the labeled samples were used to 

train the classifier. Therefore for levee applications, where training data is usually small 

in number, the SVM classification with GLCM features gives the best performance in 

identifying various objects on the levee. 

Figure 6.21 (a) UAVSAR 3-band (HH, HV, and VV) color composite of the study area 
(b) Training mask with four ground truth classes 
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6.2.2.1 k-NN Classification with DWT features 

k-NN is one of the simplest but most widely used machine learning algorithms. 

The k-NN algorithm classifies xo by assigning it the label most frequently represented 

among the k nearest samples; in other words, a decision is made by examining the labels 

on the k nearest neighbors and taking a vote.  We find the set of k nearest neighbors in the 

training set to xo and then classify xo as the most frequent class among the k neighbors. 

Euclidean distance was used to compute the distance measure between training sample 

and the given testing sample. In this research, we test the algorithm with multiple k 

values, and with DWT and GLCM texture features. 

The k-NN classifier was implemented on a UAVSAR subset with the extracted 

DWT coefficients. The algorithm was tested with multiple nearest neighbors k with k = 1, 

k = 2, and k = 3 and with multiple DWT block sizes. The classifier was also 

implemented without the texture features i.e. only with HH, HV, and VV polarimetric 

features. In this case, 30% of the labeled samples were randomly selected as training and 

the rest as testing. The accuracy assessment has been conducted ten times, and the 

experimental results were averaged. The classification accuracies chart with different 

wavelet block sizes and different k values is shown in Figure 6.22. The results show that 

the classifier performed well with DWT block size B = 8, with one nearest neighbor i.e. k 

= 1. The confusion matrix of k-NN classifier with DWT features with block size 8, k = 1 

and trained with 30% of labeled samples is given in Table 6.4, and Table 6.5 shows the 

confusion matrix of the classifier trained with 50% of labeled samples. 
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Figure 6.22 Classification accuracy (%) of k-NN classifier with DWT features and with 
different block size (represented as B) for UAVSAR subset with 50% 
training samples. 

Daubechies mother wavelet with one decomposition level was used. 

Table 6.4 Confusion Matrix of k-NN classifier output with DWT features, Block Size 
= 8, k = 1 with 30% training and 70% testing samples 

Slump Slide Healthy Levee Stressed Vegetation Levee Road PA 

Slump Slide 48 4 0 1 90.6 

Healthy Levee 1 23 33 3 38.3 

Stressed Vegetation 1 11 28 0 70.0 

Levee Road 1 17 0 12 40.0 

UA 94.1 41.8 45.9 75.0 61.9 
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Table 6.5 Confusion Matrix of k-NN classifier output with DWT features - Block Size 
= 8, k = 1 with 50% training samples 

Slump Slide Healthy Levee Stressed Vegetation Levee Road PA 

Slump Slide 36 1 1 0 94.7 

Healthy Levee 2 40 0 1 93.0 

Stressed Vegetation 0 1 26 2 89.7 

Levee Road 0 0 1 21 95.4 

UA 94.7 95.2 92.8 87.5 92.9 

6.2.2.2 SVM classification with DWT features 

The classification accuracies for the SVM classifier using DWT features with 

different wavelet block sizes and with different RBF kernel parameter (represented as 

sigma) for the UAVSAR subset is shown in Figure 6.23. The results show that the 

classifier performed well with DWT block size B = 8, with sigma value 0.04. The 

confusion matrix of SVM classifier with DWT features with block size 8, σ = 0.04 

trained with 30% of labeled samples is given in Table 6.6, and Table 6.7 shows the 

confusion matrix of the classifier trained with 50% of labeled samples. 
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Classification accuracy (%) of SVM classifier with DWT features and with 
different block size (represented as B) as well as RBF kernel parameter 
(represented as sigma) for UAVSAR subset with 50% training samples. 

Daubechies mother wavelet with one decomposition level was used. 

Table 6.6 Confusion Matrix of SVM classifier output with DWT features, block Size 
= 8, σ= 0.04 with 30% training and 70% testing samples 

Slump Slide Healthy Levee Stressed Vegetation Levee Road PA 

Slump Slide 26 27 0 0 49.1 

Healthy Levee 11 21 26 2 35.0 

Stressed Vegetation 2 17 19 2 47.5 

Levee Road 0 14 0 16 53.3 

UA 66.7 26.6 42.2 80.0 50.0 
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Table 6.7 Confusion Matrix of SVM classifier output with DWT features, block Size 
= 8, σ= 0.04 with 50% training samples 

Slump Slide Healthy Levee Stressed Vegetation Levee Road PA 

Slump Slide 38 0 0 0 100.0 

Healthy Levee 2 37 1 2 88.1 

Stressed Vegetation 0 0 29 0 100.0 

Levee Road 0 5 0 17 77.3 

UA 95.0 88.1 96.7 89.5 91.8 

6.2.2.3 k-NN classification with GLCM features 

The GLCM features are extracted from four spatial orientations: horizontal, left 

diagonal, vertical, and right diagonal corresponding to 0°, 45°, 90°, and 135°, and six 

features have been computed on each matrix. The features computed in this study are: 

energy, correlation, variance, homogeneity, entropy, and inertia. Experiments were 

conducted with different block size windows (5x5, 7x7, 9x9, 11x11, and 13x13), and the 

k-NN classifier was trained and tested with this extracted feature data. The performance 

has been evaluated with multiple k values. With DWT features, the classes healthy levee 

and stressed vegetation were confused, and about half of the healthy levee pixels were 

classified as stressed vegetation pixels and vice versa, when the classifier was trained 

with 30% of labeled samples. Also, the road pixels were classified as healthy levee 

pixels. However, with GLCM features, the classifier performed very well by 

distinguishing the classes properly. When the classifier trained with 50% of labeled 

samples, it performed fairly well with a highest accuracy of 90% (Figure 6.24). The 
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confusion matrix of kNN classifier output with GLCM features, trained with 30% of 

labeled samples is given in Table 6.8. 

Figure 6.24 Classification accuracy (%) of k-NN classifier with GLCM features for 
UAVSAR subset for different block sizes and with 50% training samples 
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Table 6.8 Confusion Matrix of k-NN classifier output with GLCM features, Block 
Size = 11, k=1 with 30% training and 70% testing samples 

Slump Slide Healthy Levee Stressed Vegetation Levee Road PA 

Slump Slide 40 8 6 0 74.1 

Healthy Levee 7 53 1 0 86.9 

Stressed Vegetation 2 1 35 3 85.4 

Levee Road 1 0 5 25 80.6 

UA 80.0 85.5 74.5 89.3 82.0 

6.2.2.4 SVM classification with GLCM features 

The GLCM features are extracted from four spatial orientations: horizontal, left 

diagonal, vertical, and right diagonal corresponding to (0°, 45°, 90°, and 135°) and six 

features have been computed on each matrix. The features computed in this study are: 

energy, correlation, variance, homogeneity, entropy, and inertia. Experiments were 

conducted with different block size windows (5x5, 7x7, 9x9, 11x11, and 13x13), and the 

SVM classifier was trained and tested with this extracted feature data, and the 

performance has been evaluated. With DWT features, and 30% of the labeled sample 

data for training, the classifier performance was poor in distinguishing various objects / 

classes on the levee, resulting an overall accuracy of 50%. However, with GLCM 

features, and 30% training data, the classifier performed well and attained an overall 

accuracy of 86.8% (Table 6.9). When the classifier was trained with 50% of labeled 

samples, the accuracies obtained with GLCM features (Table 6.10) are the same as the 
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accuracies obtained with DWT features. Figure 6.25 shows the classification accuracy of 

SVM classifier with GLCM features. 
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Figure 6.25 Classification accuracy (%) of SVM classifier with GLCM features for 
UAVSAR Subset for different block size and with 50% training samples 

Table 6.9 Confusion Matrix of SVM classifier output with GLCM features, Block Size 
= 11, σ= 0.5 with 30% training samples 

Slump Slide Healthy Levee Stressed Vegetation Levee Road PA 

Slump Slide 47 3 4 1 85.4 

Healthy Levee 3 57 1 0 93.4 

Stressed Vegetation 5 0 35 1 85.4 

Levee Road 2 1 3 25 80.6 

UA 82.5 93.4 81.4 92.6 86.8 
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Table 6.10 Confusion Matrix of SVM classifier output with GLCM features, Block Size 
= 11, σ= 0.5 with 50% training samples 

Slump Slide Healthy Levee Stressed Vegetation Levee Road PA 

Slump Slide 35 2 1 0 92.1 

Healthy Levee 1 41 1 0 95.3 

Stressed Vegetation 2 0 25 2 86.2 

Levee Road 1 0 1 21 91.3 

UA 89.7 95.3 89.3 91.3 91.3 

6.2.3 SVM Classification with L-band and X-band SAR data 

This study uses the UAVSAR multi-polarized (HH, HV and VV), multi-look 

radar image acquired on 25th January 2010 and the TerraSAR-X dual polarization data 

(HH and VV) acquired on 15th September 2010 (unfortunately, closer acquisition dates 

were not available). The spatial resolutions for UAVSAR and TerraSAR-X imagery are 

5.5 m and 1 m, respectively. At the time of image acquisition there was one active slump 

slide (Slide 25) located at (32.5685, -91.0393) north of Vicksburg, Mississippi. A subset 

of the study area which has this active slump slide was chosen as the area of analysis. 

Based on the ground truth data collected by US Army Corp. of Engineers (USACE), the 

training masks were created and utilized in the classification tasks, which is shown in 

Figure 6.26. The method first calculates the Discrete Wavelet Transform (DWT) of every 

pixel vector of L-band and X-band SAR imagery. 
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Figure 6.26 Training mask with two ground truth classes: 1. Slump slide, and 2. 
Healthy Levee 

6.2.4 SVM Classification with L-band UAVSAR data 

Each pixel of multi-look, multi-polarized UAVSAR imagery is 5.5m X 5.5m and 

the size of the subset is 98 x 94 pixels, out of which 58 are slump slide pixels and 121 are 

healthy levee pixels. For this subset, 30% of the labeled samples were randomly selected 

as training, and the rest as testing. The SVM classification algorithm was implemented on 

the extracted DWT texture features of the subset with a window size of 4. The results 

show that the SVM classifier performed well with a highest accuracy of 70% for slide 

detection and 82.6% for healthy levee at σ = 0.2. The classification accuracies for the 

UAVSAR subset with multiple σ values are shown in Figure 6.27. 

101 



www.manaraa.com

 

 

 

 

 

 

  

 

  

 

Figure 6.27 SVM tuning for UAVSAR dataset of 25 January, 2010. Relationship 
between classification accuracy and σ with a constant regularization 
parameter log C = 4. 

6.2.5 SVM Classification with X-band TerraSAR-X data 

Each pixel of dual-polarized TerraSAR-X imagery is 1m X 1m and the size of the 

subset is 500 x 562 pixels, out of which, 1984 are slump slide pixels and 3630 are healthy 

levee pixels. For this subset, 30% of the labeled samples were randomly selected as 

training and the rest as testing. The SVM classification algorithm was implemented and 

the results show a highest accuracy of 54.6% for slide and 65.9% for healthy levee 

detection at σ = 0.06. The classification accuracies for TerraSAR-X image are shown in 

Figure 6.28. 
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Figure 6.28 SVM tuning for TerraSAR-X dataset of 15 September, 2010. Relationship 
between classification accuracy and σ with a constant regularization 
parameter log C = 4. 

Experimental results showed that higher accuracies were attained using L-band 

radar data compared to the X-band data. The slump slides are rough in texture at scales 

more compatible with the longer L-band wavelength. This factor, and also the greater 

penetration through vegetation and soil, likely explain the better performance. The 

performance of the X-band classifier was however still good enough that it should be 

considered for this application when a suitable L-band sensor is not available or practical. 
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6.2.6 Classification with polarimetric decomposition parameters Entropy (H), 
Anisotropy (A) and Alpha (H-A-Alpha) 

The UAVSAR imagery acquired on 16 June 2009 was used in the analysis. Each 

pixel of multi-look UAVSAR imagery is 5.5 m x 5.5 m and the size of the subset is 1.1 

km along the levee (164 x 94 pixels), which had three reported slide events at the time of 

image acquisition. Based on the in situ data, the slump slides are marked by polygons as 

shown in Figure 6.29. 

From the radar polarimetric backscatter data, the coherency matrix was computed, 

which contains the second order statistical information about the polarization. The 

decomposition parameters entropy (H), anisotropy (A) and scattering angle (α) are 

derived from the eigenvalue decomposition of the coherency matrix. 

6.2.6.1 Entropy (H) 

The parameter entropy (H) indicates the degree of randomness of the scattering 

medium. The slump slides are usually rough in texture, which will result high entropy 

values. But the levees in our study area are covered with vegetation (different types of 

grass-- mostly Bermuda, Rye, Johnson grass and weeds at some areas), so the river side 

of the levee has moderate to high entropy values. From the entropy map shown in Figure 

6.29 (a), it is clear that the slump slides have high entropy values ranging from 0.48 -

0.72. 

6.2.6.2 Anisotropy (A) 

The anisotropy values are also very high due to vegetation on the levee. The 

values of anisotropy within the slump slide areas range from 0.95 to 0.98 (Figure 6.29 

(b)). 
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6.2.6.3 Scattering Angle (α) 

The α angle corresponds to the variation in scattering mechanism, with α = 0° 

corresponding to surface scattering; α = 45°, dipole scattering; and α = 90°, double 

bounce scattering. For smooth surfaces, surface scattering dominates and the entropy is 

close to 0. As shown in Figure 6.29 (c), the alpha values are very high due to double-

bounce scattering. The slump slides are rough in texture with certain depth, so these areas 

resulted in double-bounce scattering. Also, the vegetation on the levee also causes 

double-bounce scattering, resulting in high values of scattering angles all through the 

levee. The alpha values within the slump slide range from 89.5° to 89.8° degrees. 

Figure 6.29 Polarimetric features from 16 June 2009 UAVSAR subset. (a) Entropy, (b) 
Anisotropy, and (c) Scattering angle (α). 
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6.2.7 Classification with H-A-Alpha polarimetric decomposition features 

The Support Vector Machine (SVM) and Maximum Likelihood Classifiers 

(MLC) were implemented based on the polarimetric target decomposition parameters 

entropy (H), anisotropy (A), and scattering angle (α) derived from the eigenvalue 

decomposition of the coherency matrix. The training mask for these classifiers is shown 

in Figure 6.30. This subset has a total of 102 slump slide pixels and 549 healthy levee 

pixels. 

Figure 6.30 Training mask for UAVSAR subset with two ground truth classes: 1. 
Slump slide and 2. Healthy Levee with 3-band UAVSAR (HH, HV, and 
VV) image at the background. 
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The polarimetric decomposition features H, A, and Alpha were applied to a 

maximum likelihood classifier (MLC) with leave-one-out cross validation technique. 

There are more “healthy levee” pixels than the “slump slide” pixels in this subset, and the 

classifier predicted the healthy levee pixels with a highest accuracy of 95% but 

performed poorly in identifying the slump slide pixels with an accuracy of 47% as given 

in Table 6.11.  The classifiers were trained with 30% of the labeled data. The SVM 

classifier performed better than MLC with slump slide and healthy levee accuracies of 

64% and 85% at σ = 0.35 as shown in Figure 6.31. 

Table 6.11 Confusion Matrix of Maximum Likelihood Classifier output for UAVSAR 
dataset with leave-one-out cross validation. PA is Producer’s Accuracy; 
UA is User’s Accuracy 

Slump Slide Healthy Levee PA 

Slump Slide 48 54 47.1 

Healthy Levee 27 522 95.1 

UA 64 90.6 87.6 
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Figure 6.31 SVM classifier accuracies with polarimetric decomposition feature set (H, 
A, and Alpha) for UAVSAR subset of 16 June 2009. 
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

This research developed a machine learning framework for levee slide detection 

through automated analysis of remotely sensed synthetic aperture radar imagery. SAR 

data from airborne L-band UAVSAR, and space-based TerraSAR-X X-band sensors 

were used in this study to detect anomalies on the levee. The important factors that affect 

the radar backscatter intensity are the radar frequency, polarization, and incidence angle. 

The results showed that the 3- channel L-band radar performed better than the 2-channel 

X-band radar. This is most likely due to its ability to penetrate vegetation on the levee 

and thus provide more information about soil properties. However, the lower availability 

and higher acquisition costs of L-band radar data are important to consider, and make it 

useful to consider X-band data. The performance accuracies of target detection showed 

that X-band data is a good alternative when L-band data is not an option. The constant 

incidence angle throughout the image swath is an advantage of space-based TerraSAR-X 

sensor, which minimizes the backscatter variations due to varied incidence angles. The 

airborne UAVSAR sensor has the limitation of varied incidence angles across the image 

swath, so the study area with constant levee orientation was analyzed in this work. 

Surface roughness is an important property to distinguish slump slides as the radar 

backscatter is strongly influenced by irregularities on the levee. Polarimetric and textural 

features were computed and utilized in the classification tasks to achieve efficient levee 
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classification. The polarimetric and texture features extracted in this study are pixel-based 

and window-based respectively. Per-pixel features include radar backscatter intensity in 

each of the polarization channels (HH, HV, and VV) and polarimetric decomposition 

parameters - entropy, anisotropy, and scattering angle. Two types of textural features 

examined in this study are: DWT, and GLCM features. The classification algorithms 

were tested with texture features extracted using different window sizes. 

Supervised and unsupervised classification algorithms were applied to the SAR 

data for characterizing vulnerability of levee segments. The supervised algorithms 

studied in this research are the SVM, kNN, and maximum likelihood classifiers and the 

unsupervised classifier implemented was the RX anomaly detector algorithm. The RX 

detector algorithm was able to identify the active slump slides at the time of radar image 

acquisition. The classification output also consists of some false positives in addition to 

the true positives, which are slump slides. Based on the slide ground truth data from the 

Mississippi Levee Board, it was confirmed that some areas which were flagged as 

“anomalous” in the classifier output became new slump slides at a later date. Other false 

positives in the output need further investigation to check whether these are vulnerable 

areas, but such study will require extensive soil measurements. The conclusion is that the 

unsupervised anomaly detection algorithms are very fast in implementation and do not 

need ground truth information, so the classifier results can guide levee managers to 

investigate the areas shown as anomalies in the classification map.  

The supervised classifiers were tested with different training sample size and the 

classification accuracy was evaluated. The support vector machine supervised learning 

algorithm with GLCM features provided excellent classification accuracies in identifying 
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slump slides on the levee. The results showed that inclusion of textural features derived 

from the SAR data using DWT and GLCM features improved the overall classification 

accuracies. 

7.1 Future Work 

A major recommendation for further study is to undertake more extensive testing 

of the interferometric features to detect small-scale deformations along the levee by using 

large numbers of repeat pass radar imagery. From the field campaign, we observed that 

grasses grown over areas with cracks and fractures on the levee are stressed for moisture 

compared to the grasses grown over healthy areas of the levee.  This research can be 

extended by incorporating multispectral or hyperspectral imagery to the SAR data using 

data fusion techniques. The radar data can identify the soil properties which can lead to 

vegetation stress, and fusing the multispectral or hyperspectral data enables the detection 

of subtle differences in vegetation stress. While implementing the machine learning 

algorithms to detect anomalies on the levee, some areas on the levee were excluded due 

to small shrubs on the levee. Incorporating multispectral or hyperspectral data along with 

radar data would benefit the analysis by not requiring the exclusion of those areas. A 

majority filter can be applied to the classifier output to remove the outliers and decrease 

the false positives, thereby improving the classifier performance.  Alternate approaches 

for levee characterization could include object-based or region-based analysis, which 

might improve the overall accuracies for detecting slump slides. 

In this study, the SAR data correction for local incidence angle variation was not 

considered, so future work is needed for correcting the SAR data for terrain slope and 

levee orientation variations. 
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